a: Xét tứ giác ANMP có
\(\widehat{ANM}=\widehat{APM}=\widehat{PAN}=90^0\)
Do đó: ANMP là hình chữ nhật
a: Xét tứ giác ANMP có
\(\widehat{ANM}=\widehat{APM}=\widehat{PAN}=90^0\)
Do đó: ANMP là hình chữ nhật
6. Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh tứ giác ABDC là hình chữ nhật.
b) Gọi E là điểm đối xứng của A qua B. Chứng minh tứ giác BEDC là hình bình hành.
c) EM cắt BD tại K. Chứng minh: EK = 2KM.
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Qua M kẻ ME ^ AB (E Î AB), MF ^ AC (FÎ AC).
a) Chứng minh tứ giác AEMF là hình chữ nhật.
b) Gọi N là điểm đối xứng với M qua F. Chứng minh tứ giác AMCN là hình bình hành.
c) Để tứ giác AMCN là hình chữ nhật thì tam giác ABC cần có thêm điều kiện gì?
Cho tam giác ABC cân tại A, có AH là đường cao. Gọi M và N lần lượt là trung điểm của hai cạnh AB và AC.
a) Gọi E là điểm đối xứng của H qua M. Chứng minh tứ giác AHBE là hình chữ nhật.
b) Gọi F là điểm đối xứng A qua H. Chứng minh tứ giác ABFC là hình thoi.
c) Gọi K là hình chiếu của H qua FC, I là trung điểm HK. Chứng minh BK⊥IF
Bài 5. Cho tam giác ABC vuông tại A có M, N, P lần lượt là trung điểm BC, AB, AC.
a) Chứng minh BNPC là hình thang;
b) Tứ giác ANMP là hình gì? Vì sao?
c) Gọi D đối xứng với M qua N, E đối xứng với M qua P. CM: D, A, E thẳng hàng;
d) Để tam giác MED là tam giác vuông cân thì tam giác ABC cần thêm điều kiện gì?
Bài 5. Cho tam giác ABC vuông tại A có M, N, P lần lượt là trung điểm BC, AB, AC.
a) Chứng minh BNPC là hình thang;
b) Tứ giác ANMP là hình gì? Vì sao?
c) Gọi D đối xứng với M qua N, E đối xứng với M qua P. CM: D, A, E thẳng hàng;
d) Để tam giác MED là tam giác vuông cân thì tam giác ABC cần thêm điều kiện gì?
Cho tam giác abc cân tại A. Gọi D, E lần lượt là trung điểm của AB, BC. Gọi M là điểm đối xứng với E qua D.
a) Chứng minh tứ giác AEBM là hình chữ nhật.
b) Chứng minh tứ giác ACEM là hình bình hành.
c) Kẻ EH vuông góc với AC, K là trung điểm của AH, N là điểm đối xứng với E qua C. Chứng minh NH vuông góc với EK.
Bài 1 : Cho tam giác ABC vuông tại A. Gọi D là trung điểm cạch BC, E là điểm đối xứng với A qua D.
a) Chứng minh : Tứ giác ABEC là hình chữ nhật.
b) Trên tia đối của AB lấy F sao cho AF = AB. Chứng minh : AE song song CF.
c) Tứ giác BECF là hình gì ? Cho BC = 10cm, AC = 8cm. So sánh diện tích hình chữ nhật ABEC và diện tích tam giác ACF.
Bài 2 : Cho tam giác ABC nhọn (AB < AC) đường cao AK. Gọi D, E, F theo thứ tự là trung điểm của AB, AC, BC.
a) Tứ giác BDEF là hình gì ?
b) Chứng minh : Tứ giác DEFK là hình thang cân.
c) Gọi H là trực tâm của tam giác ABC. Gọi M, N, P theo thứ tự là trung điểm của HA, HB, HC. Chứng minh MF, NE, PD bằng nhau và cắt nhau tại trung điểm mỗi đoạn.
Vẽ hình cụ thể nhé. Cảm ơn nhiều.
giúp mình b,c,d với ạ
Bài 5:. Cho tam giác ABC vuông tại A có M, N, P lần lượt là trung điểm BC, AB, AC.
a) Chứng minh BNPC là hình thang;
b) Tứ giác ANMP là hình gì? Vì sao?
c) Gọi D đối xứng với M qua N, E đối xứng với M qua P. CM: D, A, E thẳng hàng;
d) Để tam giác MED là tam giác vuông cân thì tam giác ABC cần thêm điều kiện gì?
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Từ
M kẻ ME, MF lần lượt vuông góc với AB và AC (E thuộc AB, F thuộc AC).
a) Chứng minh tứ giác AEMF là hình chữ nhật.
b) Lấy điểm K đối xứng với điểm M qua F. Chứng minh F là trung điểm của AC và
tứ giác AMCK là hình thoi.
c) Gọi O là giao điểm của AM và EF. Chứng minh tứ giác ABMK là hình bình hành
và ba điểm B, O, K thẳng hàng.
d) Tìm điều kiện của tam giác ABC để tứ giác ABCK là hình thang cân.