a: Xét ΔBMD và ΔCMA có
MB=MC
\(\widehat{BMD}=\widehat{CMA}\)
MD=MA
DO đó: ΔBMD=ΔCMA
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
a: Xét ΔBMD và ΔCMA có
MB=MC
\(\widehat{BMD}=\widehat{CMA}\)
MD=MA
DO đó: ΔBMD=ΔCMA
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA, lấy điểm D sao cho: MD = MA. Chứng minh rằng: a) ∆BMD = ∆CMA b) AB // CD c) Vẽ Ax//BC. Ax cắt DB kéo dài tại E. Chứng minh B là trung điểm của ED
Bài 1: Cho ∆ABC vuông tại A, gọi M là trung điểm của BC. Trên tia đối tia MA lấy D sao cho MA = MD. Chứng minh:
a. ∆BMD = ∆CMA
b. AB // CD.
c. AB BD.
d. Kẻ Ax // BC . Ax cắt BD kéo dài tại E. Chứng minh B là trung điểm DE.
Bài 2: Cho ∆ABC, qua B kẻ dường thẳng song song AC, qua C kẻ duong thẳng
Cho tam giác ABC vuông tại A có góc C=30 độ. Kẻ AK vuông góc với BC ( K thuộc BC). Gọi M là trung điểm của KC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA
a/ Chứng minh : Tam giác KMD = tam giác CMA
b/ Tính số đo của góc AKD
c/ Vẽ KN vuông góc với AB (N thuộc AB) Chứng minh : Ba điểm N, K, D thẳng hàng
Cho tam giác ABC vuông tại A . Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA, lấy điểm D sao cho : MD=MA. Chứng minh rằng :
a. Tam giác BMD= tam giác CMA
b. AB//CD
c. Vẽ Ax//BC. Ax cắt DB kéo dài tại E. Chứng minh B là trung điểm của ED
Cho tam giác ABC có AB<AC. Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA ,lấy điểm D sao cho MD=MA.
A)Chứng minh tam giác ABM=tam giác DCM
B)Chứng minh DB//AC(dấu // là song song)
C)Qua A vẽ đường thẳng // với BC,đường thẳng này cắt BD tại E. Chứng minh :B là trung điểm của ED
Cho tam giác ABC. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Gọi E là trung điểm của cạnh AB. Trên tia đối của tia ED lấy điểm F sao cho ED = EF.
a. Chứng minh AC // BD
b. Chứng minh A là trung điểm của F
c. Chứng minh MA = MD
1, Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Vẽ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điểm E sao cho HE = HA. Chứng minh rằng: AE vuông góc với ED.
2, Cho tam giác ABC. Gọi M là trung điểm của BC. Vẽ BD vuông góc với AM tại D, CE vuông góc với AM tại E. Chứng minh rằng : AB + AC > 2AM.
Cho tam giác ABC có ba góc nhọn (AB < AC) và M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh: Tam giác AMB = Tam giác DMC
b) Chứng minh: AB // CD
c) Vẽ AH vuông góc với BC (H thuộc BC). Trên tia đối của tia HA lấy điểm E sao cho HE = HA. Chứng minh: ME = MD.
d) Gọi K là trung điểm của ED. Chứng minh MK vuông góc với BC.
Cho tam giác ABC có cạnh AB=AC, M là trung điểm của BC
a. Chứng minh tam giác ABM = tam giác ACM
b. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh AB // CD
C. Trên nửa mặt phẳng bờ là AC không chứa điểm B, vẽ tia Ax // BC cắt Dc tại E
Tính số đo góc CEx biết góc ABC = 30 độ
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh BC.
Trên tia đối của tia MA lấy điểm D sao cho MA = MD. Chứng minh rằng:
a/ ∆ABM = ∆DCM ; | b/ DB DC |