áp dụng định lý py-ta-go cho ΔABC vuông tại A ta có:
BC2=AB2+AC2
102=62+AB2
100=36+AB2
hay AB2=100-36=64
⇒AB=\(\sqrt{64}\)=8
vậy AB=8
xét ΔACK và ΔBDK có:
KD=KC(giả thuyết)
KA=KB(CK là trung tuyến)
\(\widehat{AKC}\)=\(\widehat{BKD}\)(2 goc đối đỉnh)
⇒ΔACK=ΔBDK(c-g-c)
⇒AC=BD(2 cạnh tương ứng)
xét ΔCBD có
BC+DC>CD(bất đẳng thức tam giác)
Mà DC=2KC;AC=BD
⇒AC+BC>2CK(điều phải chứng minh)