cho tam giác ABC vuông cân tại A có AB=AC=6 cm. a)tính độ dài đoạn thẳng BC b)Vẽ tia phân giác của góc B cắt AC tại D. kẻ DH vuông góc với BC tại H.Chúng minh tam giác AND =tam giác HBD và BD là đường trung trực của AH
Cho tam giác ABC vuông tại A, phân giác BD. Kẻ DH vuông góc BC tại H.
a. Chứng minh BD là trung trực của AH.
b. Lấy M là trung điểm của AB. Qua M kẻ đường thẳng song song với AC cắt BD tại O.
Chứng minh OB = OH.
Cho tam giác ABC vuông tại A, Góc B bằng 60 độ. Tia phân giác của góc ABC cắt AC tại D. Kẻ DH vuông góc với BC tại H, Kẻ Ce vuông góc với BD tại E. Chứng minh rằng:
a) Tam giác BDC cân tại D
b)DH là đường trung trực của đoạn thẳng BC
c)CD là tia phân giác của góc BCE
#GIÚP_MÌNH_VỚI_ẠK
cho tam giác ABC vuông cân tại A có AB=AC=6 cm. a)tính độ dài đoạn thẳng BC b)Vẽ tia phân giác của góc B cắt AC tại D. kẻ DH vuông góc với BC tại H.Chúng minh tam giác AND =tam giác HBD và BD là đường trung trực của AH
Cho tam giác ABC vuông tại A, phân giác BD. Kẻ DH vuông góc BC tại H.
a. Chứng minh BD là trung trực của AH.
b. Lấy M là trung điểm của AB. Qua M kẻ đường thẳng song song với AC cắt BD tại O.
Chứng minh OB = OH.
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
Cho tam giác ABC vuông tại A có góc C=30° . Kẻ đường trung trực của đoạn thẳng AC , cắt AC tại H và cắt BC tại D. Nối A và D. Kẻ đường phân giác của góc ABC cắt AD tại K, cắt DH tại I. a) Chứng minh tam giác DHA=tam giác DHC b) Chứng minh tam giác ABD đều. c) gọi E,F là hình chiếu vuông góc của I xuống các đường thẳng BC,BA . Chứng minh IE=IF=IK