a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
b: Xét tứ giác AFDH có
AF//DH
AF=DH
Do đó: AFDH là hình bình hành
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
b: Xét tứ giác AFDH có
AF//DH
AF=DH
Do đó: AFDH là hình bình hành
Câu 3: Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB tại D, HE vuông góc với AC tại E.
a) Chứng minh tứ giác ADHE là hình chữ nhật.
b) Gọi F là điểm đối xứng với E qua A. Chứng minh tứ giác AFDH là hình bình hành.
c) Tìm điều kiện của tam giác ABC để tứ giác ADHE là hình vuông.
cho tam giác abc vuông tại a(ab<ac) có đường cao ah(H thuộc bc). kẻ HD vuông góc với AB tại D và HE vuông góc với AC tại E
A)chúng minh tứ giác ADHE là hình chữ nhật
b) gọi F là điểm đối xứng H qua D. Chứng minh tứ giác AEDF là hình bình hành
c) gọi M là là trung điểm của bc chứng minh am vuông góc với A
Cho tam giác ABC vuông tại A(AB AC) có đường cao AH(H BC). Kẻ HD vuông góc với AB tại D và HE vuônggócvới AC tại E. a) Chứng minh: Tứ giác ADHE là hình chữ nhật. b) Gọi F là điểm đối xứng của H qua D . Chứng minh: tứ giác AEDF là hình bình hành. c) Gọi M là trung điểm của BC . Chứng minh: AM vuông góc với AF .
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc với AB, HD vuông góc với AC.
a, Chứng minh tứ giác ADHE là hình chữ nhật.
b, Gọi M là trung điểm của BC, N là giao điểm của AM và HD. Chứng minh góc BHE = góc MAC.
c, Chứng minh tứ giác BEDN là hình bình hành.
Cho tam giác ABC vuônh tại A (AB<AC) Có AH là đường cao. Vẽ HD vuông góc AB tại D, HE vuông AC tại E
a, Chứng minh Tứ giác ADHE là hình chữ nhật
b, Trên tia đối của tia AC lấy F sao cho AE=AF. Chứng minh tứ giác AFDH là hình bình hành
c, Gọi M là điểm đối xứng của B qua A. Chứng minh Tứ giác EMFB là hình thoi
GIÚP EM VỚI Ạ E CẢM ƠN E CẦN GẤP Ạ
Câu 3 (3,0 điểm). Cho tam giác ABC vuông tại A (AB > AC), đường cao AH. Kẻ HD vuông góc với AB D AB , kẻ HE vuông góc với AC E AC . Gọi O là giao điểm của AH và DE. a) Chứng minh rằng: Tứ giác ADHE là hình chữ nhật và OA = OE b) Chứng minh rằng: ABC AED c) Gọi I là trung điểm của BC. Chứng minh rằng: AI vuông góc với DE
Cho tam giác ABC vuông tại A, đường cao AH. Từ H kẻ HE, HF lần lượt vuông góc với AB, AC.
a) Chứng minh tứ giác AEHF là hình chữ nhật.
b) Gọi O là trung điểm của AH. Chứng minh ba điểm E, O, F thẳng hàng.
c) Tìm điều kiện của tam giác ABC để tứ giác AEHF là hình vuông.
d) Khi tứ giác AEHF là hình vuông, biết HC = 3cm. Tính diện tích tứ giác AEHF
cho tam giác ABC vuông tại A (AB<AC) có đường cao AH (H thuộc BC). Kẻ HD vuông góc với AB tại D và HE vuông với AC tại E
a). CM: tứ giác ADHE là hình chữ nhật
b) Gọi F là điểm đối xứng của H qua D. CM: tứ giác AEDF là hình bình hành
c) Gọi M là trung điểm của BC. CM: AM vuông góc với AF
Cho tam giác ABC vuông tại A, đường cao AH, kẻ HD vuông góc với AB, D thuộc AB, kẻ HE vuông góc với AC a, tứ giác ADHE là hình gì vì sao b, tam giác ABC phải có điều kiện gì thì tứ giác ADHE là hình vuông vì sao