\(BH=\dfrac{AB^2}{BC}=\dfrac{225}{16+BH}\\ \Leftrightarrow BH^2+16BH-225=0\\ \Leftrightarrow BH=9\left(BH>0\right)\\ \Leftrightarrow BC=BH+HC=25\\ \Leftrightarrow AC=\sqrt{BC^2-AB^2}=20\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{225}{16+BH}\\ \Leftrightarrow BH^2+16BH-225=0\\ \Leftrightarrow BH=9\left(BH>0\right)\\ \Leftrightarrow BC=BH+HC=25\\ \Leftrightarrow AC=\sqrt{BC^2-AB^2}=20\left(cm\right)\)
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
Cho tam giác ABC vuông tại A có đường cao AH
a) Cho HB/HC=9/16 và AH=8cm. Tính AB và AC
1/Cho tam giác ABC vuông tại A, đường cao AH=30cm, \(\dfrac{AB}{AC}\)=\(\dfrac{5}{6}\). Tính HB,HC
2/Cho tam giác ABC có AB=5cm, AC=12cm, BC=13cm. Kẻ đường cao AH. Tính HB, HC
1/Cho tam giác ABC vuông tại A, đường cao AH=30cm, \(\dfrac{AB}{AC}\)=\(\dfrac{5}{6}\). Tính HB,HC
2/Cho tam giác ABC có AB=5cm, AC=12cm, BC=13cm. Kẻ đường cao AH. Tính HB, HC
1/cho tam giác abc vuông tại a đường cao AH=2cm,AB=1/2AC. tính AB,AC,HB,HC
2/cho tam giác abc vuông tại a đường cao AH=12cm.tính cạnh huyền BC,biết \(\dfrac{HB}{HC}\)=\(\dfrac{1}{3}\)
Cho tam giác ABC vuông tại A, có AH là đường cao. Biết AB = 8 cm, HC - HB = 8 cm. Tính HB, HC, AC
Cho tam giác ABC vuông tại A, đường cao AH Biết AB=7,2cm, AC 9,6cm. Tính HB và HC
Tam giác ABC vuông tại C có AC = 15 cm. Đường cao CH chia AB thành hai đoạn AH và HB. Biết HB = 16 cm. Tính diện tích tam giác ABC.
Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH (H thuộc BC)
a) Cho biết HB = 3cm, HC = 9cm. Tính AH, AB, AC?
b) Chứng minh: tan2C + cot2C = HC/HB + HC/HB (không sử dụng số liệu ở câu a để chứng minh).