Theo hệ thực lưỡng cạnh và hình chiếu có:
\(AB^2=HB.BC\Rightarrow HB=\frac{AB^2}{BC}\)
\(AC^2=HC.BC\Rightarrow HC=\frac{AB^2}{BC}\)
\(\Rightarrow\frac{HB}{HC}=\frac{AB^2}{BC}:\frac{AC^2}{BC}=\frac{AB^2}{AC^2}=\frac{5^2}{6^2}=\frac{35}{36}\)
Đặt \(\frac{HB}{HC}=\frac{25}{36}=x\Rightarrow HB=25x\Rightarrow HC=36x\)
\(AH^2=HB.HC=25x.36x=15^2=225\)
\(\Leftrightarrow25.36.x^2=225\)
\(\Rightarrow x^2=\frac{225}{36.25}=\frac{1}{4}\)
\(\Rightarrow x=\frac{1}{2}\)
\(\Rightarrow HB=\frac{1}{2}25=12,5,HC=\frac{1}{2}.36=18\)
\(BC=HB+HC=12,5+18=30,5\)