Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Hiếu

Cho tam giác abc vuông tại a, đường cao ah. a)cm tam giác abc đồng dạng với tam giác hac b)kẻ hk vuông góc với ba tại k. chứng minh KH^2=KA.KB c)cho ac=10cm, ch=8cm. tính ah và diện tích tam giác abc\

 

 

 

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{ACB}\) chung

Do đó: ΔABC đồng dạng với ΔHAC

b: Xét ΔKHB vuông tại K và ΔKAH vuông tại K có

\(\widehat{KHB}=\widehat{KAH}\left(=90^0-\widehat{B}\right)\)

Do đó: ΔKHB đồng dạng với ΔKAH

=>\(\dfrac{KH}{KA}=\dfrac{KB}{KH}\)

=>\(KH^2=KA\cdot KB\)

c: Ta có: ΔAHC vuông tại H

=>\(HC^2+HA^2=AC^2\)

=>\(HA^2=10^2-8^2=36\)

=>\(HA=\sqrt{36}=6\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(HB=\dfrac{6^2}{8}=4,5\left(cm\right)\)

BC=BH+CH

=4,5+8

=12,5(cm)

Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot12,5\cdot6=3\cdot12,5=37,5\left(cm^2\right)\)


Các câu hỏi tương tự
Riegrow Ilay
Xem chi tiết
7A11 Trần Gia Bảo
Xem chi tiết
Trí Nguyễn
Xem chi tiết
Phương Lê
Xem chi tiết
Kon Kon
Xem chi tiết
Hoàng Thị Thùy Trang
Xem chi tiết
Lê Thị Hà Anh
Xem chi tiết
Bích Nguyễn
Xem chi tiết
Phạm Khánh Linh
Xem chi tiết