b: Xét ΔABC vuông tại A và ΔABE vuông tại A có
AB chung
AC=AE
=>ΔABC=ΔABE
c: Xét ΔBKA vuông tại K và ΔBHA vuông tại H có
BA chung
góc KBA=góc HBA
=>ΔBKA=ΔBHA
=>BK=BH
=>ΔBKH cân tại B
b: Xét ΔABC vuông tại A và ΔABE vuông tại A có
AB chung
AC=AE
=>ΔABC=ΔABE
c: Xét ΔBKA vuông tại K và ΔBHA vuông tại H có
BA chung
góc KBA=góc HBA
=>ΔBKA=ΔBHA
=>BK=BH
=>ΔBKH cân tại B
Cho tam giác ABC vuông tại A Trên tia đối của tia AC lấy điểm K sao cho AK = AC AH Cho AB = 8 cm AC = 6 cm Tính độ dài cạnh BC b Chứng minh BK bằng BC c so sánh hai góc nhọn b và c d kể km vuông góc với BC K M cắt ba tại H chứng minh ch vuông góc với BC CA
Cho tam giác ABC cân có AB=AC=10cm, BC=12cm. Kẻ AH vuông góc BC tại H
a, Chứng minh A là trung điểm của BC và tính độ dài BC
b, Trên tia đối của tia BC lấy điểm M, trên tia đối của tia BC lấy điểm N sao cho BM=BN. Chứng minh rằng tam giác AMN cân
c, Từ B kẻ BE vuông góc AM tại E, từ C kẻ EF vuông góc AN tại F. chứng minh tam giác MBE= tam giác NCF
d, Gọi K là giao điểm của BE và CF. Chứng minh A,H,K thảng hàng
Cho tam giác ABC cân có AB=AC=10cm, BC=12cm. Kẻ AH vuông góc BC tại H
a, Chứng minh A là trung điểm của BC và tính độ dài BC
b, Trên tia đối của tia BC lấy điểm M, trên tia đối của tia BC lấy điểm N sao cho BM=BN. Chứng minh rằng tam giác AMN cân
c, Từ B kẻ BE vuông góc AM tại E, từ C kẻ EF vuông góc AN tại F. chứng minh tam giác MBE= tam giác NCF
d, Gọi K là giao điểm của BE và CF. Chứng minh A,H,K thảng hàng
Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AB, E thuộc cạnh AC sao cho AD = AE.
a) Chứng minh BE = CD.
b) Gọi K là giao điểm của BE và CD. Chứng minh tam giác KBC cân.
c) Chứng minh AK là tia phân giác góc A.
d) Kéo dài AK cắt BC tại H. Cho AB =5 cm, BC = 6 cm. Tính độ dài AH.
cho tam giác ABC cân có AB=AC=10cm, BC=12cm.Kẻ AH vuông góc với BC tại H.
a) Chứng minh H là trung điểm BC và tính độ dài AH
b)Trện tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN. chứng minh rằng tam giác AMN cân.
c)Từ B kẻ BE vuông góc với AM tại E, từ C kẻ CF vuông góc với AN tại F. Chứng minh góc MBE bằng góc NCF.
d) Gọi K là giao điểm của BE và CF. Chứng minh A,H,K thẳng hàng.
cho tam giác ABC cân có AB=AC=10cm, BC=12cm.Kẻ AH vuông góc với BC tại H.
a) Chứng minh H là trung điểm BC và tính độ dài AH
b)Trện tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN. chứng minh rằng tam giác AMN cân.
c)Từ B kẻ BE vuông góc với AM tại E, từ C kẻ CF vuông góc với AN tại F. Chứng minh góc MBE bằng góc NCF.
d) Gọi K là giao điểm của BE và CF. Chứng minh A,H,K thẳng hàng.
Cho tam giác ABC vuông góc tại A có AB bằng 6 cm AC bằng 8 cm a tính độ dài cạnh BC b Vẽ AH vuông góc với BC tại H Trên AC lấy điểm D sao cho HD bằng HB Chứng minh AB = AC B Tính độ dài cạnh BC trên tia đối của tia ha lấy điểm E sao cho EH=AH Chứng minh ED vuông góc với AC
Cho tam giác ABC vuông ở A Trên tia đối của tia AC lấy điểm K sao cho AK = AC a Cho a b 8 cm AC bằng 6 cm Tính độ dài cạnh BC
B Chứng minh BK bằng BC
C So sánh hai góc nhọn B và C
Kẻ km vuông góc với BC K M cắt BC tại H chứng minh ch vuông góc với BC CA
Mọi người giúp đỡ cho mik nhen, bn nào trả lời câu hỏi của mình sớm nhất, đúng, kb, mik chọn luôn nhen ♡♡
Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DI
a/ Chứng minh :∆ DEI = ∆DFI
b/ Các góc DIE và góc DIF là những góc gì ?
c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.
Bài 2
Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = HB. Từ C kẻ CE ⊥ AD. Chứng minh :
a)Tam giác ABD là tam giác đều .
b)AH = CE.
c)EH // AC .
Bài 3 Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm. Trên tia đối của tia AC lấy điểm D sao cho AD =AC
a. Chứng minh tam giác ABC vuông
b) Chứng minh ΔBCD cân
c)Gọi E là trung điểm của BD, CE cắt AB tại O. Tính OA, OC
Bài 4:
Cho ABC cân tại A, vẽ AH vuông góc với BC tại H. Biết AB=5cm, BC= 6cm.
a) Chứng minh BH =HC.
b) Tính độ dài BH, AH.
c) Gọi G là trọng tâm của tam giác ABC. Chứng minh rằng A, G, H thẳng hàng.
d) Chứng minh ∠ABG = ∠ACG
Bài 5. (3,5 điểm)
Cho DABC có góc C = 900 ; BC = 3cm; CA = 4cm. Tia phân giác BK của góc ABC (K∈ CA); từ K kẻ KE ⊥ AB tại E.
a) Tính AB.
b) Chứng minh BC = BE.
c) Tia BC cắt tia EK tại M. So sánh KM và KE.
d) Chứng minh CE // MA
Bài 6:
Cho ΔABC vuông tại A, đường phân giác BE. Kẻ EH vuông góc với BC (H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:
a) ΔABE = ΔHBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC.
d) AE < EC.
Bài 7
Cho ABC cân tại A có AB = 5cm, BC = 6cm. Từ A kẻ đường vuông góc AH đến BC.
a. Chứng minh: BH = HC.
b. Tính độ dài đoạn AH.
c. Gọi G là trọng tâm Trên tia AG lấy điểm D sao cho AG = GD. Tia CG cắt AB tại F. Chứng minh: BD = 2/3CF
d) Chứng minh: DB + DG > AB.
Bài 8
Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm K sao cho BK = BC. Vẽ KH vuông góc với BC tại H và cắt AC tại E.
a) Vẽ hình và ghi GT – KL ?
b) KH = AC
c) BE là tia phân giác của góc ABC ?
d) AE < EC ?
Bài 9
Cho ΔABC cân tại A, hai trung tuyến BM, CN cắt nhau tại K. Chứng minh :
a) ΔBNC = ΔCMB
b) ΔBKC cân tại K
c) MN // BC