a: Xét ΔBAC vuông tại A có AH là đường cao
nên BA^2=BH*BC
b: BC=căn 18^2+24^2=30cm
CD là phân giác
=>DA/AC=DB/BC
=>DA/4=DB/5=(DA+DB)/(4+5)=18/9=2
=>DA=8cm
a: Xét ΔBAC vuông tại A có AH là đường cao
nên BA^2=BH*BC
b: BC=căn 18^2+24^2=30cm
CD là phân giác
=>DA/AC=DB/BC
=>DA/4=DB/5=(DA+DB)/(4+5)=18/9=2
=>DA=8cm
Cho tam giác vuông tại A có AB =18 cm , AC = 24 cm với đường cao AH ( H thuộc BC )
a) Cm AB2 = BH .BC
b) Kẻ đường phân giác CD của tam giác ABC ( D thuộc AB ) . Tính DA
c) Từ B kẻ đường thẳng vuong góc với đường thẳng CD tại E và cắt đường thẳng AH tại F . Trên đoạn thẳng CD lấy điểm G sao cho BA = BG . CM BG vuong goc FG
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Biết AB = 18cm, AC= 24 cm
Từ B kẻ đường thẳng vuông góc với đường thẳng CD tại E vă cắt đường thẳng AH tại F. Trên đoạn thẳng CD lấy điểm G sao cho BA=BG
Chứng minh BG vuông góc FG
Cho Tam giác ABC vuông tại A ( AB < AC ) có đường cao AH
a) Chứng minh tam giác ABC đồng dạng tam giác CBA
b) Chứng minh AH2 = BH . HC
c) Trên đường thẳng vuông góc AC tại C , lấy điểm D sao cho CD = AB ( D và B nằm khác phía sao với đường thẳng AC ) . Đoạn thẳng HD cắt đoạn thẳng AC tại S . Kẻ AF vuông góc HS tại F .CM BH . CH = HF.HD
d) CM SFC = SHC
Cho tam giác ABC vuông có AC>AB, vẽ đường cao AH. Trên tia HC lấy điểm D sao cho HD=AH, Đường vuông góc với BC tại D cắt AC tại E.
a. Cm: tam giác HBA đồng dạng tam giác ABC và AB2=BH.BC
b. Cm: tam giác CDA đồng dạng tam giác CEB và AB= AE
c. Gọi M là trung diểm BE. Cm: góc BMH = Góc BCE
d. Tia AM Cắt BC tại G. Cm: (BG/BC) = HD/(AH+HC)
Cho tam giác ABC vuông tại A có AB = 9cm, AC = 12cm, đường cao AH,, tia phân giác góc A cắt BC tại D
a) Tính BC, CD, chiều cao AH của tam giác ABC
b) Lấy điểm E sao cho tứ giác ADCE là hình bình hành. Kẻ EM vuông góc với AC ( M thuộc AC ), AN vuông góc với CE ( N thuộc tia CE ) chứng minh tam giác HAC đồng dạng tam giác MEA
Cho tam giác ABC vuông tại A có AB < AC . Vẽ đường phân giác CD của tam giác ABC. Kẻ BK vuông góc với CD ( K thuộc đường thẳng CD) a) giả sử AC = 24 cm, BC = 30 cm. Tính BD / AD b) vẽ AH là đường cao của tam giác ABC. Chứng minh tam giác HBA và tam giác ABC đồng dạng. c) chứng minh DA.DB=DK.DC d) trên đoạn thẳng DC lấy điểm F sao cho BF = BA. Gọi E là giao điểm của hai đường thẳng HA và BK. Chứng minh BF vuông góc với FE
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm,đường cao AH,tia phân giác của góc A cắt BC tại D
a)Tính độ dài đoạn thẳng BC và CD?
b)Tính chiều cao AH của tam giác ABC
c)Lấy điểm E sao cho tứ giác ADCE là hình bình hành.Kẻ EM vuông góc với AC(M thuộc AC), AN vuông góc với CE(N thuộc tia CE) Chứng minh tam giác HAC đồng dạng với tam giác MEA và CD.CH+CE.CN=AC^2
: Cho tam giác ABC vuông tại A có AB = 9 cm; AC = 12 cm, đường cao AH.
a) Chứng minh: △ ABC đồng dạng △HAC
b) Kẻ tia phân giác CD của góc C ( D thuộc AB) cắt AH tại E. Tính DA/DB ?
c) Chứng minh rằng: AH2 = AH.HB