1) Cho tam giác ABC có AB<AC, AH là đường cao. Goi M, N, K lần lượt là trung điểm AB, AC, BC
a)Chứng minh MNKH là hình thang cân
b)Tia AH và tia AK lần lượt lấy điểm E và D sao cho H là trung điểm AE và K là trung điểm của AD. Chứng minh tứ giác BCDE là hình thang cân
2) Cho tam giác ABC có Â>90 độ. Bên ngoài tam giác ABC, vẽ tam giác ABD và tam giác ACE vuông cân tại A
a) Chứng minh CD=BE
b) Gọi M,N,P lần lượt là trung điểm của BD, CE, BC. Chứng minh tam giác MNPlà tam giác vuông cân
Cho tam giác ABC vuông tại A có AB<AC. N là trung điểm BC. Gọi M, P lần lượt là hình chiếu của N trên AB, AC. Lấy E sao cho P là trung điểm của NE.
a) Chứng minh M,P lần lượt là trung điểm của AB, AC
b) Tứ giác ANCE là hình gì ( chứng minh hình)
Cho tam giác ABC cân tại A. Lấy D, E lần lượt là trung điểm của AB và AC. a) Chứng minh tứ giác BDEC là hình thang cần. b) Lấy I là trung điểm của BD. Qua I vẽ đường thẳng song song với AC cắt DE tại M, BC tại N. Chứng minh MN – EC. ©) Tứ giác BMDN là hình gi? Vì sao? d) . Tìm điều kiện của AABC đề tử giác BMDN là hình vuông?
Cho tam giác ABC vuông tại A, đường cao AH, AB=5cm, AC=12cm. D, E là hình chiếu của H trên AB, Ac
a) Tính BC, DE
b) Chứng minh tam giác ACB đồng dạng tam giác ADE
c) Đường vuông góc DE tại D, E cắt B, C lần lượt tại M, N. chứng minh M là trung điểm BH, N là trung điểm CH
d) BN^2-CN^2 = AB^2
bài 1
cho hình bình hành ABCD, góc A<90 độ và AD=2AD.Gọi M,N lần lượt là trung điểm cảu AD,BC
a,chúng minh các tứ giác ABNM,CDMN là hình thoi
b, Kẻ CE vuông góc với AB tại E ,MN cắt CE tại F, chứng minh MF vuông góc EC
c, Chứng minh tam giác MEC cân tại M
Bài 1: Cho hình vuông ABCD, E là điểm thuộc cạnh DC, F là điểm trên tia đối của tia BC sao cho BF=DE.
a/ chứng minh tam giác AEF vuông cân.
b/ Gọi I là trung điểm EF. Lấy K đối xứng với A qua I. Chứng minh tứ giác AEKF là hình vuông.
Bài 2: cho tam giác ABC vuông tại A có góc ABC=60 độ, kẻ tia Ax song song với BC. Trên tia Ax lấy D sao cho AD = DC.
a/ Tính các góc BAD và DAC.
b/ chứng minh ABCD là hình thang cân.
c/ gọi E là trung điểm BC. Chứng minh ADEB là hình thoi.
d/ cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED.
Bài 3: cho tam giác ABC có hai trung tuyến BD và CE cắt nhau tại G. Gọi M, N lần lượt là trung điểm của BG và CG.
a/ chứng minh MNDE là hình bình hành.
b/ điều kiện của tam giác ABC để hình bình hành MNDE là hình chữ nhật, hình thoi.
c/ chứng minh DE + MN = BC.
~~~~~~~~~~~GIÚP MK VS CÁC BẠN LÀM BÀI NÀO CŨNG ĐƯỢC~~~~~~~~~~~~~~~~~
cho tam giác ABC vuông tại A có AB = 6cm,BC=10cm.D,E lần lượt là trung điểm của AB và BC
a) Tính độ dài đoạn thẳng DE và chứng minh ADEC là hình thang vuông
b) Gọi F là điểm đối xứng của E qua D. Tứ giác AFEC là hình gì ? Vì sao?
c) CF cắt AB tại K cắt AE tại M ,N là giao điểm của DM với AC . Chứng minh rằng ADEN là hình chữ nhật
(giúp mình với,mình đang cần gấp ạ.Cảm ơn mọi người nhiều lắm ạ)
Cho tam giác ABC vuông tại A, gọi M,N lần lượt là trung điểm của tam giác AB,BC
a. Tứ giác MNCA là hình gì? Cho biết MN=20 cm. Tính MN
b. Gọi D là đối xứng của A qua N. Chứng minh tứ giác ABDC là hình chữ nhật
c. Gọi E là trung điểm của AC và F là điểm đối xứng của N qua E. Chứng minh tứ giác ANCF là hình thoi
d.BC cắt DM và DE lần lượt tại G và H. Chứng minh N là trung điểm của GH
TOÁN HÌNH HỌC LỚP 8 HK1
Cho tam giác ABC vuông cân tại A . Gọi D là trung điểm của BC. Trên đoạn AD lấy điểm E bất kì ( E khác A và D ). Qua E kẻ các đường vuông góc với AB AC , lần lượt tại M N, .
a) Chứng minh tứ giác AMEN là hình vuông.
b) Chứng minh MN BC / / .
c) Qua M kẻ đường thẳng vuông góc với DN tại F . Chứng minh AFE = 90 . d) Chứng minh B E F , , thẳng hàng.