Cho tam giác ABC vuông tại A , có AB = 9cm , AC = 12cm . Tia phân giác của góc A cắt BC tại D . Từ D kẻ DE vuông góc với AC ( E thuộc AC ) a, chứng minh Δ ABC đồng dạng ΔEDC b, tính độ dài các đoạn thẳng BC , BD , CD
cho tam giác ABC có góc A = 90 độ , AB = 9 cm , AC = 12 cm , đường cao AH
a ) tính BC , AH, BH
b) gọi M là trung điểm của BC , kẻ Mx vuông góc BC tại M ,Mx cắt BA tại D ,cắt AC tại E , c/m : tam giác BMD đồng dạng tam giác BAC
C) c/m : AH song song DM , tính HM , AD
d) c/m : BE vuông góc DC
Cho tam giác ABC vuông tại A, AB = 9cm, AC = 12cm. Tia phân giác của góc BAC cắt BC tại D. Từ D kẻ đường thẳng vuông góc với AC, đường thẳng này cắt AC tại E. a) Chứng minh tam giác CED đồng dạng tam giác CAB. b) Tính CD:BE=?.c) Sabd=?
Cho tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Tia phân giác góc A cắt BC tại D. Từ D kẻ DE vuông góc với AC (E thuộc AC).
a,Tính độ dài các đoạn thẳng BD, BC, CD.
b,Chứng minh tam giác ABC đồng dạng với tam giác EDC.
c,Tính DE
d,Tính tỉ số SABD/SADC
Vẽ hình, viết giả thiết kết luận và giải giúp mik với :<
cho tam giác ABC vuông tại A có AB>AC lấy điểm M trên đoạn BC . qua M kẻ đường thẳng vuông góc với BC cắt đoạn AB tại I , cắt tia CA tại D chứng minh rằng
a)tam giác ABC ĐỒNG DẠNG VỚI TAM GIÁC MDC
b)BI.BA=BM.BC
Cho tam giác ABC vuông ở A biết AB = 8cm AC = 6cm, tia phân giác của góc A cắt cạnh huyền tại điểm D từ D kẻ đường thẳng vuông góc với AC cắt AB tại H chứng minh rằng a, tính độ dài BC b, chứng minh tam giác ABC đồng dạng với tam giác HDC c, tính tỉ số BD và DC tính tỉ số diện tích của tam giác ADH và tam giác ADC
cho tam giác ABC vuông tại C (AC<BC). vẽ tia phân giác Ax của góc BAC cắt cạnh BC tại I. qua B vẽ đường vuông góc với tia Ax và cắt tia Ax tại H.
a) chứng minh tam giác AIC đồng dạng với tam giác BHI.
b) cho AC=15cm,AB=25cm. tính độ dài các cạnh CB, Ci ?
c) chứng minh HB^2 =Hi.HA
d) gọi k là trung điểm của cạnh AB. qua i vẽ đường thẳng vuông góc với iK và cắt hai cạnh AC và BH lần lượt tại M và N chứng minh i là trung điểm của MN
Cho tam giác ABC vuông tại A. AB>AC, M là điểm tuỳ ý trên cạnh BC. Qua M kẻ tia Mx vuông góc với BC và cắt AB tại I, cắt CA tại D. Chứng minh rằng
a.)Tam giác ABC đồng dạng với tam giác MDC
b.)BI.BA=BM.BC
c,CI cắt BD tại K.CM:BI.BA+CI.CK ko đổi khi M chuyển động trên BC
d,Cho góc ACB bằng sáu mươi độ và SCMA bằng tám mươi cm vuông.Tính SCDM
Các bn giúp mk vs ạ vẽ hình ln cho mk nha các bn lm c,d cho mk là đc ạ mk lm đc a,b r mk cảm ơn
Cho tam giác ABC vuông tại A có AB > AC, M là 1 điểm tùy ý trên BC. Qua M kẻ đường thẳng vuông góc với BC cắt đoạn AB tại I và cắt tia CA tại D, CI cắt BD tại K. Chứng minh rằng:
a) D ABC đồng dạng MDC
b) BI. BA = BM. BC
c) BI .BA + CI .CK không phụ thuộc vào vị trí của điểm M.
d) AB là tia phân giác của góc MAK
1) Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC.
a) Tính độ dài OC; CD
b) Chứng minh rằng FD. BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Chứng minh: OM=ON.
2) Cho tam giác ABC có AB = 8cm; AC = 12cm. Trên cạnh AB lấy điểm D sao cho BD = 2cm, trên cạnh AC lấy điểm E sao cho AE = 9cm.
a) Tính các tỉ số AE/AD;AD/AC
b) Chứng minh: tam giác ADE đồng dạng tam giác ABC
c) Đường phân giác của góc BAC cắt BC tại I. Chứng minh: IB.AE = IC.AD