a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot5=3\cdot4=12\)
hay AH=2,4(cm)
Vậy: BC=5cm; AH=2,4cm
b) Xét (A) có
AI là một phần đường kính
MH là dây
AI⊥MH tại I(gt)
Do đó: I là trung điểm của MH(Định lí đường kính vuông góc với dây)
Xét ΔCMI vuông tại I và ΔCHI vuông tại I có
CI chung
IM=IH(I là trung điểm của MH)
Do đó: ΔCMI=ΔCHI(hai cạnh góc vuông)
Suy ra: CM=CH(hai cạnh tương ứng)
Xét ΔCMA và ΔCHA có
CM=CH(cmt)
CA chung
AM=AH(=R)
Do đó: ΔCMA=ΔCHA(c-c-c)
Suy ra: \(\widehat{CMA}=\widehat{CHA}\)(Hai góc tương ứng)
mà \(\widehat{CHA}=90^0\)(gt)
nên \(\widehat{CMA}=90^0\)
hay CM là tiếp tuyến của (A)