Cho tam giác ABC vuông tại A, đường cao AH .
̂ a) Biết BH = 3,6cm,HC = 6,4cm. Tính cạnh AH và số đo của 𝐵.
b) Gọi M là trung điểm BC. Vẽ điểm D đối xứng với điểm A qua M. Đường thẳng AH cắt BD tại E. Chứng minh rằng AH.AE = BH.BC .
c) Gọi F là giao điểm của AH và CD, P là giao điểm của BF và CE. Chứng minh rằng hai tam giác ABP và FBA đồng dạng.
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A), bán kính AH. Từ C kẻ tiếp tuyến CM với đường tròn (A) (M là tiếp điểm, M không nằm trên đường thẳng BC).
a) Chứng minh bốn điểm A, M, C, H cùng thuộc một đường tròn.
b) Gọi I là giao điểm của AC và MH. Chứng minh AM2 = AI.AC.
c) Kẻ đường kính MD của đường tròn (A). Đường thẳng qua A vuông góc với CD tại K cắt tia MH tại F. Chứng minh BD là tiếp tuyến của đường tròn (A). Từ đó chứng minh ba điểm D,F, B thẳng hàng.
d) Đường tròn đường kính BC cắt đường tròn (A) tại P và Q. Gọi G là giao điểm của PQ và AH. Chứng minh G là trung điểm của AH.
Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH, đường trung tuyến AM (H, M thuộc BC)
1, Cho AB = 6, BC = 10. Tính BH và sin góc ACB
2, Gọi D là điểm đối xứng của A qua M. Chứng mình rằng CD2 = BH.BC
3, Đường thẳng AH cắt hai đường thẳng BD và CD lần lượt tại T và Q. Gọi P là giao điểm của 2 đường thẳng CT và BQ. Chứng mình rằng T là trực tâm của tam giác BCQ
cho tam giác ABC vuông tại A(AB<AC) và đường cao AH. Gọi E là điểm đói xứng với B qua H. Đường tròn đường kính Ec cắt AC tại K. chứng minh HK là tiếp tuyến của đường tròn
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn ( ) O . Gọi M là trung điểm của cạnh BC và N là điểm đối xứng của M qua O . Đường thẳng qua A vuông góc với AN cắt đường thẳng qua B vuông góc với BC tại D . Kẻ đường kính AE . Chứng minh rằng:
b) CD đi qua trung điểm của đường cao AH của tam giác ABC .
Cho tam giác ABC vuông tại A có đường cao AH và D là trung điểm AC. Gọi M là giao điểm BD và AH. Qua M vẽ đường thẳng song song với AC cắt AB, AC lần lượt tja E và F, AF cắt BD tại I. Chứng minh tam giác BIH đồng dạng với tam giác BCD.
Cho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEH. AB>AC
cho tam giác ABC vuông tại A (AB<AC) đường cao AH ,H thuộc BC,gọi D là điểm đối xứng của A qua H,M là trung điểm của HC,đường thảng D đi qua H vuông góc với AM cắt đường thẳng AB tại điểm I
1)CM AH bình=HD.HC
2)CM ID//BC
Cho tam giác vuông ABC vuông tại A, với AC<AB, AH là đường cao kẻ từ đỉnh A. Các tiếp tuyến tại A và B với đường tròn (O) ngoại tiếp tam giác ABC cắt nhau tại M. Đoạn MO cắt cạnh AB ở E. Đoạn MC cắt đường cao AH tại F. Kéo dài CA cắt đường thẳng BM ở D. Đường thẳng BF cắt đường thẳng AM ở N.
(1. C/m OM//CD và M là trung điểm của BD)
2. C/m EF//BC
3, C/m HA là tia phân giác góc MHN
4, Trên tia BA lấy điểm K sao cho BK=3.BA. Kẻ đường thẳng Ky vuông góc với KC tại K cắt BD tại G. C/m tam giác AKG cân.