a, Dễ thấy ADHE là hcn nên \(AH=DE\)
Mà AH là hình chiếu từ A tới BC nên \(AH\le AM\)
Do đó \(DE\le AM\)
Mà AM là tt ứng cạnh huyền BC nên \(AM=\dfrac{1}{2}BC\)
Vậy \(DE\le\dfrac{1}{2}BC\)
a, Dễ thấy ADHE là hcn nên \(AH=DE\)
Mà AH là hình chiếu từ A tới BC nên \(AH\le AM\)
Do đó \(DE\le AM\)
Mà AM là tt ứng cạnh huyền BC nên \(AM=\dfrac{1}{2}BC\)
Vậy \(DE\le\dfrac{1}{2}BC\)
Câu 1: Cho tam giác ABC vuông tại A, đường cao AH, D và E là 2 đường vuông góc kẻ từ H đến AB và AC.
A) Chứng minh AH=DE
B) I là trung điểm HB, K là trung điểm HC. Chứng minh DI song song với EK
Câu 2: Cho tam giác ABC vuông góc tại A, đường cao AH, trung tuyến AM.
A) Chứng minh góc HAB = góc MAC
B) Vẽ HD vuông góc với AB, HE vuông góc với AC. Chứng minh AM vuông góc với DE.
Cho tam giác ABC vuông tại A , có đường cao AH và đường trung tuyến AM . Từ H vẽ HD vuông góc với AB tại D , vẽ HE vuông góc với AC tại E
a) CM: AH^2 = AD.AB
b) CM: AD.AB=HB.HC
c) Cho AB=12cm;AC=40cm . Tính BC,AM,AH?
d) CM: AM vuông góc với DE
cho tam gvác abc vuông tại a trung tuyến am, đường cao ah .kẻ hd vuông góc với ab tại d ,he vuông góc ac tại e .a,chứng minh ah=de b,kẻ mf vuông góc vớv ab tại f lấy điểm k sao cho f là trung điểm của mk chứng minh tứ giác ambk la hinhf thoi và am vuông góc với de c, chứng minh bd.ac+ce.ab=ab.ac
1) Cho tam giác ABC vuông tại A , AH là đường cao , AM là trung tuyến. Kẻ HD vuông góc với AB , HE vuông góc với AC , MK vuông góc với AB. Gọi N là giao điểm của AM và HE
C/m : a) AM vuông góc với DE
b) BN//DE
Cho tam giác ABC vuông tại A. Đường cao AH, qua H kẻ HE vuông góc với AB, HD vuông góc với AC. Gọi M là trung điểm BC, chứng minh AM vuông góc với DE.
Cho tam giác ABC vuông tại A, đường cao AH, kẻ HD vuông góc với AB, HE vuông góc với AC ( D thuộc Ab, E thuộc AC)
a) Cm góc C = góc ADE
b) gọi M là trung điểm của BC. Cm AM vuông góc với DE
Cho tam giác ABC vuông tại A, đường cao AH, I là trung điểm BC. Vẽ HD vuông góc AB tại D, HE vuông góc AC tại E. Chứng minh rằng AI vuông góc DE
cho tam giác ABC vuông tại A, đường cao AH, đường trung tuyến AM. Gọi D,E lần lượt là chân đường vuông góc kẻ từ A đến AB, AC. CM: AM vuông góc với DE
tam giác ABC vuông tại A có, đường cao AH, đường trung tuyến AM. Từ H kẻ HD,HE lần lượt vuông góc với AB,AC. a) Chứng minh ADHE là hình chữ nhật. b) Chứng minh AM Vuông góc DE. c) Gọi O là giao điểm của AH và DE. Qua A kẻ tia Ax vuông góc với đường thẳng MO tại P cắt tia CB tại N. Chứng minh: 3 điểm N, D, E thẳng hàng HÉP MY