a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=HC\cdot BC\)(hệ thức lượng)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB\cdot AC=BC\cdot AH\)(hệ thức lượng)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=HC\cdot BC\)(hệ thức lượng)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB\cdot AC=BC\cdot AH\)(hệ thức lượng)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
Cho tam giác ABC vuông tại A có đường cao AH. Chứng minh: giải câu e thôi mấy câu kia bt làm r
a) AB
2 = BH.BC
b) AH2 = HB.HC
c) AB.AC = AH.BC
d)
2 2 2
1 1 1
AH AB AC
= +
e) Biết AB = 3cm, BC = 5cm. Tính AH?
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm.kẻ đường cao AH (H thuộc BC).Câu a, chứng minh tam giác ABC đồng dạng với tam giác HBA và AB.AC=AH.BC
Câu b, chứng minh AH2=HB.HC
Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh
a) A B 2 = B H . B C ;
b) A H 2 = B H . H C .
Cho tam giác ABC vuông tại A có AH là đường cao . Chứng minh
a) AB2=BC.BH
b) AH2=BH.CH
c) \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
d) AH.BC=AB.AC
Cho tam giác ABC vuông tại A, AH là đường cao. Biết BH = 4cm, CH = 2cm.
a. Tính AB, AC
b. Lấy M, N là trung điểm của AC, HC. Chứng minh rằng: BH.HC = 4MN^2
c. Vẽ HD vuông góc AB, HE vuông góc với AC. Chứng minh rằng: DE^3 = BD.CE.BC
Cho tam giác ABC vuông tại A, AH là đường cao.
a) Chứng minh: tam giác HBA đồng dạng với tam giác ABC
b) Chứng minh: tam giác HBA đồng dạng với tam giác HAC. Từ đó suy ra: AH.AH=BH.HC
c) Kẻ HD vuông góc với AB và HE vuông góc với AC. Chứng minh: tam giác AED đồng dạng với tam giác ABC
d) Nếu AB.AC=4AD.AE thì tam giác ABC là tam giác gì?
Cho tam giác ABC vuông tại A, có AB= 3cm, AC= 4cm. Kẻ đường phân giác BD của góc ABC ( D thuộc AC ).
a) Tính BC,AD.
b) Vẽ đường cao AH, chứng minh tam giác ABC đồng dạng với tam giác HBA.
c) chứng minh: AB^2= BC.HB
GIẢI GIÚP MIK VỚI!!!
Cho tam giác ABC vuông tại A (AB<AC) có AH là đường cao (H thuộc cạnh BC).
a, Chứng minh: Tam giác ABC đồng dạng với tam giác HAC và
AC2= BC.HC
b, Gọi CD là tia phân giác góc ACB (D thuộc cạnh AB), E là giao điểm của AH và CD. Chứng minh: AE.AD=HE.BD