Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (HE BC). a) Chứng minh: ABC đồng dạng với ABA. b) Lấy điểm M thuộc AH. Kẻ đường thẳng đi qua B và vuông góc với CM tại K. Chứng minh:CM.CK=CH.CB. c) Tia BK cắt HA tại D. Chứng minh: goc BKH = goc BCD
Cho tam giác ABC vuông tại A, đường cao AH
a) Chứng minh rằng: ∆ABC ∽ ∆HBA
b) Lấy điểm M thuộc AH. Kẻ đường thẳng B vuông góc với CM tại K. Chứng minh CM.CK=CH.CB
c) Tia BK cắt AH tại D. Chứng minh \(\widehat{BKH}=\widehat{BCD}\)
Bài 4: Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH (H thuộc BC). Lấy điểm D đối xứng với B qua H
a) Chứng minh: tam giác ABC đồng dạng với tam giác HBA
b) Qua C dựng đường thẳng vuông góc với tia AD cắt AD ở E. Chứng minh AH.CD = CE.AD
c) Chứng minh: tam giác HDE đồng dạng với tam giác ADC
d) Cho AB = 6cm, AC = 8cm. Tính diện tích tam giác DEC
Tính diện tích tam giác DEC.
e) AH cắt CE tại F. Chứng minh tứ giác ABFD là hình thoi
Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH, H thuộc BC. Lấy điểm D đối xứng với B qua H.
a) Chứng minh tam giác ABC đồng dạng với tam giác HBA.
b) Qua C dựng đường thẳng vuông góc với tia AD, cắt AD tại E. Chứng minh AH. CD = CE. AD.
c) Chứng minh tam giác HDE đồng dạng với tam giác ADC.
d) AH cắt CE tại F. Chứng minh tứ giác ABFD là hình thoi.
Cho tam giác ABC vuông tại A có đường cao AH
a) Chứng minh: Tam giác ABC và tam giác HBA đồng dạng rồi suy ra AB^2 = BH . BC
b) CM: Tam giác AHB đồng dạng với tam giác CHA đồng dạng rồi suy ra AH^2 = BH . CH
c) Trên tia đối của tia AC lấy điểm M sao cho AM < AC , vẽ AF vuông góc với BM tại F. Chứng minh góc BFH = góc BAH
Cho tam giác ABC vuông tại B (AB<BC) Vẽ đường cao BH(H thuộc AC) Lấy điểm E đối xứng với A qua H a CM rằng tam giác ABC đồng dạng với tam giác AHB b Qua C dựng đường thẳng vuông góc với tia BE và cắt BE tại D. CM rằng BH.CE=CD.BE c CM rằng tam giác HDE đồng dạng với tam giác BCE d Cho AB= 3cm, BC=4cm.Tính diện tích tam giác DEC e BH cắt CD tại F. CM rằng tứ giác ABEF là hình thoi
Cho tam giác ABC vuông tại A có AB=15 cm AC=20cm. Vẽ AH vuông góc với BC tại H.
1,Chứng minh tam giác HBA và tam giác ABC đồng dạng.
2,Tính BC, AH.
3,Vẽ tia phân giác của góc BAH cắt BH tại D. Tính BH DH .
4, Trên cạnh HC lấy E sao cho HE =HA, qua E vẽ đường thẳng vuông góc với cạnh BC cắt AC tại M, qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc MEC tại F. Chứng minh H,M,F thẳng hàng
cho tam giác abc vuông tại A AB=6 cm AC=8 cm Vẽ đường cao AH
a,Chứng minh tam giác AHB đồng dạng với tam giác CAB
b,TÍnh độ dài AH và HB
c,Lấy điểm D bất kì trên cạnh AC Kẻ đường thẳng vuông góc với HD tại H cắt AB tại E Chứng minh tam giác BHE đồng dạng với tam giác AHD,góc BAH=góc EDH
d,Khi D là trung điểm AC tính diện tích tam giác HDE