Gọi O là trung điểm của AK
ΔHAK vuông tại H có HO là đường trung tuyến
nên \(HO=OA=OK=\dfrac{AK}{2}\)
ΔKIA vuông tại I có IO là đường trung tuyến
nên \(IO=AO=KO=\dfrac{KA}{2}\)
=>IO=AO=KO=HO
=>A,I,H,K cùng thuộc (O)
Gọi O là trung điểm của AK
ΔHAK vuông tại H có HO là đường trung tuyến
nên \(HO=OA=OK=\dfrac{AK}{2}\)
ΔKIA vuông tại I có IO là đường trung tuyến
nên \(IO=AO=KO=\dfrac{KA}{2}\)
=>IO=AO=KO=HO
=>A,I,H,K cùng thuộc (O)
cho tam giác ABC vuông tại (AB >AC) đường cao AH
a,cho BH = 25cm ; CH = 9cm ; tính AB ;AH
b, cho AH =6 ; BH = 4,5cm . tính AB,AC ,BC ,HC
c, trên cạnh AB lấy điểm M sao cho AM = AC . vẽ MK // AC ( k ∈ BC ) kẻ K I ⊥ AC tại i . đường vuông góc với BC tại K cắt AB tại B
CMR tứ giác AMKI là hình chữ nhật
ME .MB = AI2
Cho tam giác ABC vuông tạ A. Vẽ đường tròn ( O; AC/2) cắt BC tại I Kẻ OM vuông góc BC tại M. AM cắt ( O) tại N. Từ I kẻ HI vuông góc AC tại H. Gọi K là trung điểm HI.Tiếp tuyến tại I của (O) cắt AB tại E. CM: C,K,E thẳng hàng
Cho A nằm trên đường tròn (O) đường kính BC, phân giác của góc BAC cắt BC tại D và cắt đường tròn (O) tại M, AH là đường cao của tam giác ABC.
a) Cm OM vuông góc BC và MB2= MA.MD
b) Phân giác của góc ABC cắt AH tại E; cắt AM tại I; cắt AC tại F và cắt (O) tại N, cm MA = MB = MC.
c) cm EA.FA = EH.FC
d) Qua I kẻ IP vuông góc AB tại P, IP cắt BC tại K, chứng minh N, K, M thẳng hàng.
Cho tam giác ABC vuông tại A , đường cao AH vuông góc với BC tại H. Gọi E,F lần lượt là hình chiếu của H trên AB và AC. Gọi M là trung điểm của BC, kẻ AM cắt EF tại K. Cm : a, tứ giác AEHF là hình chữ nhật. B, AE×AB= AF×AC. C AM vuông góc EF tại K .
Giúp mk câu B,C với ạ 💖
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha
Cho A nằm trên đường tròn (O) đường kính BC, phân giác của góc BAC cắt BC tại D và cắt đường tròn (O) tại M, AH là đường cao của tam giác ABC.
a) Chứng minh OM vuông góc BC và MB2= MA.MD
b) Phân giác của góc ABC cắt AH tại E; cắt AM tại I; cắt AC tại F và cắt (O) tại N, cm MA = MB = MC.
c) chứng minh EA.FA = EH.FC
d) Qua I kẻ IP vuông góc AB tại P, IP cắt BC tại K, chứng minh N, K, M thẳng hàng.
Cho tam giác ABC vuông tại A, đường cao AH. Trên tia đối của tia AB lấy điểm K sao cho góc AKC = 600. D và E lần lượt là hình chiếu của H trên AB, AC. Qua A kẻ đường thẳng vuông góc với DE cắt BC tại M (M thuộc BC). Kẻ tia Cx là tia phân giác của góc ACB, qua M kẻ đường thẳng song song với AC cắt Cx tại F. Chứng minh BF vuông góc CF.