a: BC=căn 6^2+8^2=10cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=1
=>AD=3cm
b: Xét ΔABD vuông tại A và ΔEBC vuông tại E có
góc ABD=góc EBC
=>ΔABD đồng dạng với ΔEBC
c: ΔABD đồng dạng với ΔEBC
=>AD/EC=AB/EB
=>AD/AB=EC/EB
=>CD/BC=EC/EB
a: BC=căn 6^2+8^2=10cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=1
=>AD=3cm
b: Xét ΔABD vuông tại A và ΔEBC vuông tại E có
góc ABD=góc EBC
=>ΔABD đồng dạng với ΔEBC
c: ΔABD đồng dạng với ΔEBC
=>AD/EC=AB/EB
=>AD/AB=EC/EB
=>CD/BC=EC/EB
cho tam giác abc vuông tại a .cạnh ab=6cm, ac=8cm. kẻ đường phân giác abc cắt ac tại d. kẻ ce vuông góc với bd tại e. 1/tính độ dài bc. 2/ chứng minh tam giác abc đồng dạng với tam giác ebc. 3/ chứng minh cd.be=ce.cb . 4/ gọi eh là đường cao của tam giác ebc.chứng minh ch.cb=ed.eb
Đề 3
cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm. Đường phân giác của góc ABC cắt cạnh AC tại D. Từ C kẻ CE vuông góc với BD tại E. a) tình độ dài BC và tỉ số \(\frac{AD}{DC}\)
b) Chứng minh tam giác ABD đồng dạng với tam giác EBC. Từ đó suy ra BD . EC = AD . BC
c) Cm \(\frac{CD}{BC}\)= \(\frac{CE}{BE}\)
d) Gọi EH là đường cao của tam giác EBC. Cm: CH . CB = ED . EB
cho tam giác abc vuông tại a , có ab = 6cm , ác = 8cm . Đường phan gác của sóc abc cắt ac tại d . Từ c kẻ ce vuông góc với bd tại e
a) Tính độ dài bc và tỉ số ad/dc
b) Cm tam giác abd đồng dạng với tam giác ebc . Từ đó suy ra bd.ec = ad.bc
c) Cm cd/bc = ce/be
d) gọi eh là đường cao của tam giác ebc . Cm ch.cb = ed.eb
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. Tia phân giác góc ABC cắt cạnh AC tại D. Từ C kẻ CE vuông góc BD tại E. Từ E kẻ EH vuông góc BC tại H.
a) Tính tỉ số AD/DC
b) C/m: tam giác ABD đồng dạng tam giác EBC. Suy ra BD.EC=AD.BC
c) C/m: tam giác ECB đồng dạng tam giác EDC
d) C/m: CH.CB=ED.EB
Cho tam giác ABC vuông ở A biết AB = 8cm AC = 6cm, tia phân giác của góc A cắt cạnh huyền tại điểm D từ D kẻ đường thẳng vuông góc với AC cắt AB tại H chứng minh rằng a, tính độ dài BC b, chứng minh tam giác ABC đồng dạng với tam giác HDC c, tính tỉ số BD và DC tính tỉ số diện tích của tam giác ADH và tam giác ADC
Cho tam giác ABC vuông tại A, có AB=6cm, AC=8cm. Đường phân giác của góc ABC cắt cạnh AC tại D. Từ C kẻ CE vuông góc BD tại E
c. CM\(\frac{CD}{BC}=\frac{CE}{BE}\)
d. Gọi EH là đường cao tam giác EBC. Cm: CH.CB=ED.EB
Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm. Đường phân giác của góc BAC cắt cạnh BC tại D.
a.tính độ dài BC và độ dài CD
b. Kẻ đường thẳng qua D vuông góc với BC và cắt AC tại E. Chứng minh tam giác DEC đồng dạng tam giác ABC
c. Chứng minh tam giác DBE cân.
Cho tam giác ABC vuông tại A có AB =9cm AC=12cm tia phân giác góc A cắt BC tại D từ D kẻ DE vuông góc Ac E thuộc AC a, tính tỉ số BD phần DC độ dài BD và CD b,chứng minh tam giác ABC đồng dạng tam giác EDC
cho tam giác ABC vuông tại A có AB = 6, AC = 8. Tia phân giác góc ABC cắt AC tại D, từ C kẻ CE vuông góc với BD. EH là đường cao của tam giác EBC. CMR :
a, Tính BC và tỉ số AD trên DC
b, Tam giác ABD ~ tam giác EBC
c, CD/BC = CE/BE
d, CH.CB=ED.EB