Giúp em ạ! Trên đường cao AH của tam giác ABC vuông tại A, Lấy điểm D và trên tia dối của tia HA lấy E sao cho HE=AD, đường thẳng d vuông góc vs AH tạu D cắt AC tại F. Cm BE vuông góc vs EF
Cho tam giác ABC vuông tại A và kẻ đường cao AH a)C/m tam giác ABC đồng dạng tam giác HBA, từ đó=>AB.AB=BH.BC b)C/m tam giác HAB đồng dạng tam giác HCA, từ đó =>AH.AH=BH.CH c)Trên tia đối AC lấy điểm D sao cho AD>AC, vẽ đường thẳng h song song với AC, cắt AB, DB lần lượt tại M,N. C/m MN/MH=AD/AC d)Vẽ AE vuông góc BD tại E. C/m góc BEH= góc BAH
Bài 1
Cho tam giác ABC vuông tại A có đường cao AH cho AB=5cm,BH=3cm
a)Tính BC,AH
b) Kẻ HE vuông góc vs AC .Tính HE
Bài 2
Cho tam giác ABC vuông tại A đường cao AH phân giác AD biết BD=10cm,DC=20cm.Tính AH,HD
Baif3
a) cho tam giác ABC vuông tại A có AB=5cm đg cao AH=4cm. Tính chu vi tam giác ABC
b) cho tam giác ABC vuông tại A đg cao AH phân giác AD.biết BD =15cm DC=20cm Tính AH,AD
Giải nhanh giúp mk nha mk c.ơn
Bài 5 : Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB=4cm, AC=\(4\sqrt{3}\)cm. Giải tam giác ABC.
b) Kẻ HD,HE lần lượt vuông góc với AB,AC (D thuộc AB, E thuộc AC). Chứng minh BD.DA+CE.EA=\(AH^2\)
c) Lấy điểm M nằm giữa E và C, kẻ AI vuông góc với MB tại I Chứng minh \(sinAMB.sinACB=\dfrac{HI}{CM}\) GIẢI HỘ E PHẦN C THÔI Ạ
Giai hộ em ạ
1)Cho tam giác ABC vuông tại A,AH là đường cao,AB=9cm,AC=12
a)Tính BC,AH,HB,HC
b)Vẽ tia phân giác BD cắt AC tại D.Tính AD,DC?
c)Vẽ AI vuông góc BD tại I.CM tam giác BHI đồng dạng với tam giác BDC
2)Cho tam giác ABC nhọn gọi H là giao điểm 2 đường cao BE
a)CM tam giác ABC đồng dạng với tam giác ACF
b)Tìm cạnh BH lấy điểm M,trên cạnh HC lấy điểm N,sao AMC =ANC=90 độ.CM tam giác AMN cân
3)Cho tam giác ABC vuong tại A,có AH là đường cao,AH =30cm,AB/AC=5/6.Tính các cạnh tam giác ABC
BT1: Cho tam giác ABC ( AB< AC) nội tiếp đường tròn tâm O . Ba đường cao AH, BE, CF cắt nhau tại I. Kẻ đường kính AD của đường tròn O, gọi M là trung điểm BC.
a/ Chứng minh: 4 điểm B, F, E, C cùng nằm trên một đường tròn
b/ Chứng minh : EF < BC
c/ Tứ giác BICD là hình gì ? Vì sao ?
d/ Chứng minh : OM = AI / 2
BT2: Cho đường tròn tâm O, điểm A nằm ngoài đường tròn. Từ A vẽ hai đường thẳng cắt đường tròn, đường thứ nhất cắt đường tròn tại M và N ( M nằm giữa A và N ), đường thứ 2 cắt đường tròn tại E và F ( E nằm giữa A và F ) sao cho MN = EF. Kẻ OH vuông góc MN, OK vuông góc EF.
a/ So sánh AH và AK
b/ Chứng minh : AM = AE
c/ Tứ giác MEFN là hình gì ? Vì sao ?
Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc
Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm,
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH.
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN
B1:Cho hình chữ nhật ABCD. AB>AD. E thuộc CD sao cho AE=AB. F thuộc AD sao cho EF vuông góc Ea. Chứng minh : AC vuông góc BF.
B2:Cho tam giác ABC vuông tại A, đường cao AH. AB>AC.D nằm trong tam giác sao cho CD=CA. M thuộc BA sao cho góc BAM bằng 2 lần góc ACD. MD cắt AH tại N.C/m: BD^2 = BM.BA và DM=DN.
B3:Cho tam giác ABC vuông tại A, đường cao AH.O là trung điểm của AC. Kẻ AK vuông góc BO. Qua C kẻ song song với AB, cắt AK tại L.
a) CM:LH=LC.
b)Đường trung trực của BK cắt CL tại D. Chứng minh : DK=DC.