cho tam giác ABC. Từ 1 điểm M bất kì trong tam giác kẻ MD, ME,MF lần lượt vuông góc với các cạnh BC, CA, AB. Chứng minh rằng: BD2+CE2+AF2=DC2+EA2+FB2
Bài 1:Cho tam giác ABC vuông tại A có cạnh AB=6cm và AC=8cm.Các đường phân giác trong và ngoài của gocs B cắt đường thẳng AC lần lượt là M và N .Tính các đạn thẳng AM và AN
Bài 2: Cho tam giác ABC,từ một điểm M bất kì trong tam giác kẻ MD,ME,MF lần lượt vuông góc với các cạnh BC,CA,AB.CMR
BD\(^2\)+CE\(^2\)+AF\(^2\)=DC\(^2\)+EA\(^2\)+FB\(^2\)
Cho tam giác ABC . Từ một điểm M bất kì trong tam giác MD , ME , MF lần lượt vuông góc với cạnh BC , CA , AB . Chứng minh rằng :
\(BD^2+CE^2+\text{À}F^2=DC^2+EA^2+FB^2\)
Cho tam giác ABC vuông tại A (AB < AC).Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC.
a) Chứng minh : BC = DE.
b) Chứng minh : tam giác ABD vuông cân và BD // CE.
c) Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M. từ A kẻ đường vuông góc CM tại K, đường thẳng này cắt BC tại N . Chứng minh : NM // AB.
d) Chứng minh : AM = DE/2.
Cho tam giác ABC cân tại A .M à trung điểm BC ,lấy D và E lần lượt thuộc AB và AC sao cho góc MDB bằng với góc CME
a/ Chứng minh BM2 = BD.CE
b/chứng minh Tam giác MDE đồng dạng với tam giác BDM
Cho tam giác ABC cân tại A có A < 90o. Kẻ BM vuông góc Ac. Cm \(\frac{AM}{MC}=2\left(\frac{AC}{BC}\right)^2-1\)
Gợi ý: Lấy điểm đối xứng vs C qua A, ta đk tam giác DBC vuông tại B.
Bài này hơi khó, các bạn giúp mk nha!
BÀI 1:
Chứng minh rằng nếu hai cạnh bên của một hình thang cắt nhau thì đường thẳng đi qua giao điểm đó và giao điểm 2 đường chéo sẽ đi qua trung điểm các đáy của hình thang.
BÀI 2:
Tam giác ABC có BC= 2AB và góc ABC=120 độ. Chứng minh rằng đường trung tuyến BM vuông góc AB
BÀI 3:
Cho tam giác ABC vuông tại A. về phía ngoài tam giác lấy AB và BC làm cạnh, dựng các hình vuông ABDE và BCFG. Chứng minh GA vuông góc CD
BÀI 4:
Trên 2 cạnh AB và AC của tam giác ABC ta dựng ra phía ngoài của tam giác các hình vuông ABDE và ACFG ; dựng hình bình hành AEHG. Gọi K là giao điểm của AD và BE . Chứng minh CK vuông góc KH
cho tam giác ABC cân tại A , đường cao AH kẻ EH vuông góc vs AC (e thuộc ac) .gọi I là trung điểm của HE cm AI vuông góc với BE
cho tam giác abc vuông tại a, m là trung điểm của ac. vẽ md vuông góc với bc. chứng minh ab^2 =bd^2- cd^2