+ Ta có: ˆABC+ˆABD=ˆACE+ˆBCA=180oABC^+ABD^=ACE^+BCA^=180o (Vì kề bù). Mà ˆABC=ˆBCA⟹ˆABD=ˆACEABC^=BCA^⟹ABD^=ACE^
+ Ta có: AB=AC (△ABC△ABC cân ở A ). Mà AB=BD;AC=CE⟹AB=BD=AC=CEAB=BD;AC=CE⟹AB=BD=AC=CE
+ Xét: △ABD△ABD và △ACE△ACE ta có:
AB=AC (△ABC△ABC cân ở A )
BD=CE (CM trên)
ˆABD=ˆACEABD^=ACE^ (CM trên)
⟹△ABD=△ACE⟹△ABD=△ACE (cgc)
⟹AD=AE⟹AD=AE (2 cạnh tương ứng) ⟹△ADE⟹△ADE cân ở A
+ Ta có BD=CE; BQ=QC⟹DQ=EQBD=CE; BQ=QC⟹DQ=EQ
+ △ADE△ADE cân ở A có AQ là đường trung tuyến đồng thời là tia phân giác ˆDAEDAE^ (1)
+ Ta có: DB=AB ⟹△BAD⟹△BAD cân ở B có trung tuyến BM đồng thời là đường cao. ⟹BM⊥AD⟹BM⊥AD
+ Ta có: CE=AC ⟹△ACE⟹△ACE cân ở C có trung tuyến CN đồng thời là đường cao. ⟹CN⊥AE⟹CN⊥AE
+ Ta có: AD=AE⟹AD2=AE2⟹AM=ANAD=AE⟹AD2=AE2⟹AM=AN
+ Xét △AMO△AMO và △ANO△ANO ta có:
ˆAMO=ˆANO=90oAMO^=ANO^=90o
AO chung
AM=AN (CM trên)
⟹△AMO=△ANO⟹△AMO=△ANO (ch-cgv)
⟹ˆAOM=ˆAON⟹AOM^=AON^ (2 góc tương ứng)
⟹AO⟹AO là tia phân giác góc DAE (2)
+ Từ (1); (2) ta có 3 điểm A;O;Q thẳng hàng
Vậy 3 đường thẳng AQ; BM;CN đồng quy tại O
hinh tu ve nha
XÉT TAM GIÁC ABC VUÔNG CÂN Ở A CÓ
A=900 SUY RA GÓC ABC=ACB=900
GÓC ABC=GÓC ACB( ĐN TAM GIÁC CÂN)
SUY RA GÓC ABC= GÓC ACB=900:2=450
CÓ BD=BA
SUY RA TAM GIÁC DBA CÂN TẠI A ( DN TAM GIÁC CÂN)
CÓ GÓC ABC VÀ GÓC ABD LÀ 2 GÓC KỀ BÙ
SUY RA ABC+ABD=1800
THAY SỐ ĐƯỢC
450+ABD=1800
ABD=1800-450
ABD=1350
SUY RA GÓC D = GÓC BAD( ĐN TAM GIÁC CÂN)
SUY RA GÓC ADB= GÓC BAD=(1800-1350):2=22,50
K CHO MÌNH NHA