a: góc FEB+góc FBE=45+45=90 độ
=>EF vuông góc BC
b: ΔDFC vuông tại F có góc C=45 độ
nên ΔDFC vuông cân tại F
=>FD=FC
c: Xét ΔBEC có
EF,CA là đường cao
EF cắt CA tại D
=>D là trực tâm
=>BD vuông góc CE
a: góc FEB+góc FBE=45+45=90 độ
=>EF vuông góc BC
b: ΔDFC vuông tại F có góc C=45 độ
nên ΔDFC vuông cân tại F
=>FD=FC
c: Xét ΔBEC có
EF,CA là đường cao
EF cắt CA tại D
=>D là trực tâm
=>BD vuông góc CE
Cho tam giác ABC vuông cân tại A. Trên cạnh AB lấy điểm D (D khác A, B), trên tia đối của tia AC lấy điểm E sao cho AE = AD. Tia ED cắt BC tại F. Chứng minh:
a) E F ⊥ B C ; DF = BF
b) C D ⊥ B E .
Cho tam giác ABC vuông tại A (AB < AC).Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC. a) Chứng minh: BC = DE. b) Chứng minh: tam giác ABD vuông cân và BD // CE. c) Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M. từ A kẻ đường vuông góc CM tại K, đường thẳng này cắt BC tại N . Chứng minh: NM // AB. d) Chứng minh: AM = DE
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AE.
b) AD<DC
c) Ba điểm E, D, F thẳng hàng
Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.
a) Tính BC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông
d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF
Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:
a) Tam giác ANC là tam giác cân
b) NC vuông góc BC
c) Tam giác AEC là tam giác cân
d) So sánh BC và NE
Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:
a) Góc ACE= góc ABD
b) Tam giác ABD = tam giác ECA
c) Tam giác AED là tam giác vuông cân
Cho tam giác ABC vuông cân tại A. Trên cạnh AB lấy điểm D khác A và B, trên tia đối của AC lấy điểm E sao cho AE = AD.
a. Chứng minh CD = BE.
b. Chứng minh CD ⊥ BE.
c. Tia ED cắt BC tại M. So sánh MB và MD?
Cho tam giác ABC vuông cân tại A. Trên cạnh AB lấy điểm D khác A và B, trên tia đối của AC lấy điểm E sao cho AE = AD.
a. Chứng minh CD = BE.
b. Chứng minh CD ⊥ BE.
c. Tia ED cắt BC tại M. So sánh MB và MD?
Cho tam giác ABC cân tại A. từ B kẻ đường thẳng vuông góc với AB, từ C kẻ đường thẳng vuông góc với AC .hai đường thẳng này cắt nhau tại D Chứng minh
A,AD là tia phân giác của góc BAC và tam giác BDC cân
B,Trên tia đối của tia bc lấy điểm E trên tia đối của tia CD lấy điểm F sao cho CF = BE.chứng minh AE = AF
C,chứng minh EF song song BC
cho tam giác abc cân tại a, trên cạnh ab lấy điểm d, trên tia đối của tia ca lấy điểm e sao cho bd=ce. de cắt bc tại i, trên tia đối của tia BC lấy điểm F sao cho BF=CI.
A) Chứng minh tam giác FDI cân và I là trung điểm của DE.
B)Trên cạnh AC lấy điểm M sao cho AM=AD.CHứng minh DM//BC
C)Gọi N là trung điểm của BC.Chứng minh AN là đường trung trực của BC.