Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
pham trung thanh

Cho tam giác ABC vuông cân tại A. Trên cạnh AB lấy điểm M sao cho BM=2MA. trên nửa mặt phẳng bờ AB không chứa điểm C vẽ tia Bx vuông góc với AB. Trên Bx lấy điểm N sao cho AB=2BN.Đường thẳng MC cắt NA tại E. Đường thẳng BE cắt dường thẳng AC tại F.

a) CM: AF=AM

b) Gọi H là trung điểm của FC. CM: EH=BM

Cô Hoàng Huyền
24 tháng 2 2018 lúc 9:15

Góc α: Góc giữa C, A, B Góc α: Góc giữa C, A, B Góc β: Góc giữa N, B, A Góc β: Góc giữa N, B, A Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, C] Đoạn thẳng i: Đoạn thẳng [B, A] Đoạn thẳng l: Đoạn thẳng [B, N] Đoạn thẳng m: Đoạn thẳng [N, A] Đoạn thẳng r: Đoạn thẳng [B, F] Đoạn thẳng s: Đoạn thẳng [F, A] Đoạn thẳng t: Đoạn thẳng [E, C] Đoạn thẳng a: Đoạn thẳng [N, J] Đoạn thẳng b: Đoạn thẳng [E, H] A = (0.92, -1.12) A = (0.92, -1.12) A = (0.92, -1.12) A = (0.92, -1.12) A = (0.92, -1.12) A = (0.92, -1.12) A = (0.92, -1.12) C = (6.4, -1.14) C = (6.4, -1.14) C = (6.4, -1.14) C = (6.4, -1.14) C = (6.4, -1.14) C = (6.4, -1.14) C = (6.4, -1.14) Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm M: Giao điểm đường của d, i Điểm M: Giao điểm đường của d, i Điểm M: Giao điểm đường của d, i Điểm M: Giao điểm đường của d, i Điểm M: Giao điểm đường của d, i Điểm M: Giao điểm đường của d, i Điểm M: Giao điểm đường của d, i Điểm F_1: Trung điểm của B, M Điểm F_1: Trung điểm của B, M Điểm E_1: Trung điểm của B, A Điểm E_1: Trung điểm của B, A Điểm N: Giao điểm đường của e, k Điểm N: Giao điểm đường của e, k Điểm N: Giao điểm đường của e, k Điểm N: Giao điểm đường của e, k Điểm N: Giao điểm đường của e, k Điểm N: Giao điểm đường của e, k Điểm N: Giao điểm đường của e, k Điểm E: Giao điểm đường của n, m Điểm E: Giao điểm đường của n, m Điểm E: Giao điểm đường của n, m Điểm E: Giao điểm đường của n, m Điểm E: Giao điểm đường của n, m Điểm E: Giao điểm đường của n, m Điểm E: Giao điểm đường của n, m Điểm F: Giao điểm đường của p, q Điểm F: Giao điểm đường của p, q Điểm F: Giao điểm đường của p, q Điểm F: Giao điểm đường của p, q Điểm F: Giao điểm đường của p, q Điểm F: Giao điểm đường của p, q Điểm F: Giao điểm đường của p, q Điểm J: Trung điểm của B, F_1 Điểm J: Trung điểm của B, F_1 Điểm J: Trung điểm của B, F_1 Điểm J: Trung điểm của B, F_1 Điểm J: Trung điểm của B, F_1 Điểm J: Trung điểm của B, F_1 Điểm J: Trung điểm của B, F_1 Điểm H: Trung điểm của F, C Điểm H: Trung điểm của F, C Điểm H: Trung điểm của F, C Điểm H: Trung điểm của F, C Điểm H: Trung điểm của F, C Điểm H: Trung điểm của F, C Điểm H: Trung điểm của F, C

a) Gọi J là điểm thuộc AB sao cho BJ = AB/6

Ta có AM = AB/3 nên AM = 2BJ

Lại có BN = AB/2 mà AB = AC nên AC = 2BN

Vậy thì ta có ngay \(\Delta NBJ\sim\Delta CAM\left(c-g-c\right)\)

\(\Rightarrow\widehat{BNJ}=\widehat{ACM}\)

Lại có NB // AC nên NJ // EM

Xét tam giác ANJ có NJ // EM, áp dụng đinh lý Pitago ta có:

\(\frac{EA}{NE}=\frac{MA}{MJ}=\frac{2}{3}\)

Mà BN // FC (Cùng vuông góc AB) nên áp dụng định lý Ta let ta cũng có:

\(\frac{AF}{BN}=\frac{EA}{NE}=\frac{2}{3}\)

Mà \(\frac{AM}{BN}=\frac{2}{3}\Rightarrow AM=AF\)

b) Đặt BJ = a

Khi đó ta có \(AF=AM=2a;AC=6a;\)

\(NJ=\sqrt{9a^2+a^2}=a\sqrt{10}\Rightarrow EM=\frac{2a\sqrt{10}}{5}\)

\(BF=\sqrt{4a^2+36a^2}=2a\sqrt{10}\Rightarrow EF=\frac{4a\sqrt{10}}{3}\)

Ta thấy rằng \(EF^2+EC^2=64a^2=FC^2\) nên tam giác EFC vuông tại E.

Theo tính chất trung tuyến ứng với cạnh huyền trong tam giác vuông, ta có :

FH = EH = HC

Vậy nên EH = FH = FC/2 = 8a/2 = 4a = BM.


Các câu hỏi tương tự
Nguyễn Võ Thảo Vy
Xem chi tiết
Vô danh
Xem chi tiết
Anh Phúc
Xem chi tiết
nguyen cuc
Xem chi tiết
Nguyễn Tất Đạt
Xem chi tiết
mira jane strauss
Xem chi tiết
Nguyễn Quỳnh Anh
Xem chi tiết
so so
Xem chi tiết
quan
Xem chi tiết