cho tam giác ABC vuông cân tại A. Lấy điểm M trong tam giác ABC sao cho MC:MA:MB=1:2:3. Tính góc AMC
cho tam giác ABC vuông cân tại A. Lấy điểm M trong tam giác ABC sao cho MC:MA:MB=1:2:3. Tính góc AMC
Bài 1 : Trong hệ tọa độ oxy . Cho 3 điểm A ( -1 ; 1 ) , B ( 1 ; 3 ) , C ( 1 ; -1 ) .
a> CM : 3 điểm ABC không thẳng hàng .
b> Tìm tọa độ trọng tâm tam giác ABC .
c> Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành .
d>CM : tam giác ABC vuông cân tại A .
e>Tìm tọa độ điểm E sao cho tam giác ABE vuông cân tại A .
g> Tìm tọa độ điểm M nằm trên trục hoành sao cho tam giác OMA cân tại O .
Gọi M là điểm nằm trong tam giác ABC vuông cân tại B sao cho MA:MB:MC=1:2:3. TÍnh góc AMB ?
Cho tam giác ABC vuông cân tại A, A;B;C cố định .M là điểm chuyển đọng trên cạnh BC.Dựng ra phía ngoài Tam giác ABC các tam giác BMD vuông cân tại D,Tam giác CME vuông cân tại E .BD cắt CE tại K
1) Chứng minh ABKC là hình vuông
2) Xác định vị trí của M trên Bc sao cho Đoạn DE ngắn nhất
1. Cho tam giác ABC vuông tại A. Từ M trong tam giác vẽ IM vuông góc BC, JM vuông góc CA, KM vuông góc AB. Xác định M sao cho MI^2+MJ^2+MK^2 đạt GTNN
2. tam giác ABC vuông tại A. Trên cạnh AB, BC, CA lần lượt lấy K, L, M sao cho tam giác KLM vuông cân tại C. Xác định vị trí K, L, M để diện tích tam giác KML đạt GTNN
3. Cho tam giác ABC vuông tại A. M, N là 2 điểm lần lượt trên AB và AC sao cho AM=1/3AB và AN=1/3AC. biết độ dài BN =sin a. CM: cos a với a<90 độ....
Bài 1:Cho tam giác cân ABC,AB=AC=6cm,đường cao AH=5cm.Gọi O là đường tròn tam giác ABC
a)Vì sao điểm O nằm trên AH
b)Tính độ dài đường kính AD của đường tròn tâm O
Bài 2:Cho tam giác ABC vuông tại A,đường cao AH,biết AH=12cm,HB=18cm.Tính bán kính đường tròn tam giác ABC
Cho tam giác ABC vuông tại A có AB=1 và AC=2. Có 6 điểm thuộc tam giác ABC ( nằm trong hoặc nằm trên cạnh của tam giác ABC). CMR: tôn tại hai điểm có khoảng cách không vượt quá 1.
Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.