Xét ΔAME vuông tại E và ΔAMI vuông tại I có
\(\widehat{EAM}=\widehat{IAM}\)
Do đó: ΔAME\(\sim\)ΔAMI
Xét ΔAME vuông tại E và ΔAMI vuông tại I có
\(\widehat{EAM}=\widehat{IAM}\)
Do đó: ΔAME\(\sim\)ΔAMI
Cho tam giác ABC có AB = 6cm, AC = 9cm. Trên cạnh AB lấy M sao cho AM = 4,5cm, trên cạnh
AC lấy N sao cho AN = 3cm.
a) So sánh các tỉ số ANABANABvà AMACAMAC . Chứng minh : Tam giác ANM đồng dạng tam giác ABC.
b) Kẻ MK // BC (K thuộc AC). Tính CK và NK.
c) Trên cạnh BC lấy điểm J sao cho BC = 3CJ, trên cạnh MN lấy điểm I sao cho 3MI = MN.
Chứng minh : tam giác AMI đồng dạng tam giác ACJ.
d) Vẽ điểm F sao cho A là trung điểm của FB. Gọi AD, AE lần lượt là đường phân giác của
tam giác ABC, tam giác AFC (D thuộc BC, E thuộc FC). Chứng minh : ED // FB.
cho tam giác ABC nhọn có đường cao AH, gọi E và D lần lượt là hình chiếu của H trên cạnh AB và AC
a) chứng minh tam giác AHE đồng dạng tam giác HBE
b)chứng minh AH2=ACxAD
c)gọi M là giao điểm của BD và CE.chứng minh tam giác BME đồng dạng tam giác CMD
Cho tam giác ABC vuông tại A (AC > AB). Đường cao AH, đường phân giác AM. 1) Chứng minh: tam giác ABC ഗ tam giác HAC. 2) Cho AB = 15 cm; AC = 20 cm. Tính BM, CM. 3) Gọi điểm D, E lần lượt là hình chiếu vuông góc của điểm H trên AB và AC. Chứng minh: tam giác ADE ഗ tam giác ACB
Cho tam giác ABC vuông tại A (AC > AB). Đường cao AH, đường phân giác AM. 1) Chứng minh: tam giác ABC ഗ tam giác HAC. 2) Cho AB = 15 cm; AC = 20 cm. Tính BM, CM. 3) Gọi điểm D, E lần lượt là hình chiếu vuông góc của điểm H trên AB và AC. Chứng minh: tam giác ADE ഗ tam giác ACB
Cho tam giác abc vuông tại a , vẽ đường cao ah, ab=6cm , ac=8cm . a) chứng minh tam giác hba đồng dạng tam giác abc . b) tính độ dài ah .c) gọi i và k lần lượt hình chiếu của điểm h lên cạnh ab,ac . chứng minh ai.ab = ak.ac
Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH và đường phân giác BE của tam giác ABC A)Chứng minh tam giác ABC đồng dạng tam giác HBA và AB2 = BH.BC B)Gọi I là hình chiếu của C trên đường thẳng BE, N là giao điểm của BA và CI. Chứng minh IC2 = IE.IB C)Qua E vẽ đường thẳng vuông góc với BI, trên đường thẳng này lấy điểm M sao cho IA = IM. Chứng minh tam giác BMI vuông.
Mình chỉ cần câu C ai biêt hay có gợi ý gì xin chỉ giáo.
Cho tam giác ABC trên cạnh AB và AC lần lượt lấy các điểm D và E. Đường thẳng song song với AC qua D cắt BE tại I. Đường thẳng song song với AB qua E cắt CD tại K. Gọi F là giao điểm của BE và CD. Chứng minh:
a) Tam giác DFI đồng dạng với tam giác CFE
b) Tam giác DFB đồng dạng với tam giác KFE
c) KI//BC
Cho tam giác ABC vuông tại A vẽ đường cao AH , AB = 6cm , AC = 8cm
a, chứng minh tam giác HBA đồng dạng với tam giác ABC
b, tính BC,AH,BH
c, Gọi I và K lần lượt hình chiếu của điểm H lên cạnh AB,AC , chứng minh AI*AB=AK*AC
Cho tam giác ABC có AH là đường cao(H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng:
a, tam giác ABH đồng dạng với tam giác AHD
b,HE\(^2\)=AE.EC
c,Gọi M là giao điểm của BE và CD. Chứng minh rằng tam giác DBM đồng dạng với tam giác ECM