Cho tam giác ABC, các đường trung tuyến AM, BN, CP cắt nhau tại trọng tâm G. Chứng minh:
a) SAGP = SPGB = SBGM = SMGC = SCGN = SNGA;
b) Các tam giác GAB, GBC và GCA có diện tích bằng nhau
.1.Cho tam giác ABC cân tại A có AD là đường phân giác.
a) Chứng minh tam giác ABD = tam giác ACD
b) Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm A, G, D thẳng hàng.
c) Tính DG biết AB 13cm,BC 10cm
2.Cho tam giác ABC vuông ở A, có AB = 16cm,AC = 30cm. Tính tổng các khoảng cách từ trọng tâm G của tam giác đến các đỉnh của tam giác.
3.Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt C ở N. Biết AN = MN, BN cắt AM ở O. Chứng minh: a) Tam giác ABC cân ở A
b) O là trọng tâm tam giác ABC.
4.Cho tam giác cân ABC, trung tuyến AM. Đường trung trực của AB cắt AM ở O. Chứng minh rằng điểm O cách đều 3 đỉnh của tam giác ABC.
Cần gấp ạ!
cho tam giác ABC, hai đường trung tuyến AM, BN cắt nhau tại G. Diện tích tam giác AGB bằng 336cm2. Tính diện tích tam giác ABC
cho tam giác ABC có trung tuyến BN và CM giao nhau tại G. Hãy tính diện tích tam giác ABC biết diện tích tam giác ABN bằng năm cm2.
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.
Cho tam giác ABC, kẻ 3 đường thẳng AM,BN,CP nằm trong tam giác. G là giao điểm của 03 đường thẳng trên. Chứng minh rằng nếu S tam giác GAC= S tam giác GBC= S tam giác GAB (S là diện tích) thì G là trọng tâm của tam giác.
Cho tam giác ABC, có các đường trung tuyến AD,BE,CF cắt nhau tại G. Chứng minh:
a) Diện tích ABD = Diện tích ACD.
b) Diện tích các tam giác GBD, GCD, GCE, GAF, GAE, GBF bằng nhau.
cho tam giác ABC có đường trung tuyến AM và G là trọng tâm của tam giác ABC. Gọi K,N,H là các điểm đối xứng của G qua A,B,C. Gọi T là giao điểm của tia KG với NH.
a/ Chứng minh M là trung điểm GT
b/ Chứng minh G là trọng tâm của tam giác KNH
cho tam giác ABC có G là trọng tâm,2 trung tuyến BF và CD cắt nhau tại G.Gọi E là trung điểm của BC.Diện tích của tam giác AGB,BGC,AGC có bằng nhau k?
k cần vẽ hinh