cho tam giác ABC .Từ M là điểm bất kì trong tam giác kẻ MD vuông góc với BC, ME vuông với AC, MF vuông với AD. Chứng minh rằng: BD2+CE2+AF2=DC2+EA2+FB2
Cho tam giác ABC có đường cao bằng 3cm, M là điểm nằm trong tam giác. Qua M kẻ MD vuông góc với AB , ME vuông góc với AC, MF vuông góc với BC . tính MD + ME+ MF
Cho tam giác ABC có đường cao bằng 3cm, M là điểm nằm trong tam giác. Qua M kẻ MD vuông góc với AB , ME vuông góc với AC, MF vuông góc với BC . tính MD+ME+MF
Cho tam giác ABC , điểm M là điểm bất kì nằm trong tam giác. Từ M kẻ MD,ME,MF lần lượt vuông góc với BC,CA,AB. Chứng minh:BD^2 + CE^2 + AF^2 = CD^2 + EA^2 + FB^2
cho tam giác ABC .Từ M là 1 điểm bất kì trong tam giác. Kẻ MD vuông góc với BC, kẻ ME vuông góc với AC, kẻ MF vuông góc với AB.Chứng minh rằng: BD2+CE2+AF2=DC2+EA2+FB2
Cho tam giác ABC cân tại A. Vẽ đường cao BH của AC. Cho 1 điểm M bất kì thuộc BC. Vẽ MD vuông góc AB, ME vuông góc với AC, MF vuông góc với BH. Chứng minh khi M chạy trên đáy BC thì MD+ME có giá trị không đổi.