Cho tam giác ABC. Trên tia đối tia BA lấy D sao cho BD = \(\frac{1}{2}\) AB. E là trung điểm BC. Tia DE cắt AC tại M. Tính tỉ số MA : MC?
cho tam giác ABC cân tại A , điểm D thuộc AB , trên tia đối tia của CA lấy điểm E sao cho CE = BD , trên tia đối tia BC lấy điểm F sao cho BF =BD , gọi I là giao điểm của DE và BC chứng minh rằng tam giác FDI cân
BÀI 3. Cho tam giác ABC. Trên tia đối của tia BC lấy M sao cho BM = BA. Trên tia đối tia CB lấy N sao cho CN = CA. Qua M kẻ đường thẳng song song với AB, qua N kẻ đường thẳng song song với AC, chúng cắt nhau tại P.
a) Chứng minh MA là tia phân giác của PMB , NA là tia phân giác của PNC . b) Chứng minh PA là tia phân giác của MNP .
c) Gọi D là trung điểm AM, E là trung điểm AN, các đường thẳng BD, CE cắt nhau tại Q. Chứng minh QM = QN.
d) Chứng minh ba điểm P, A, Q thẳng hàng.
Cho tam giác ABC vuông tại A , đường cao AH , Trên tia đối của BC lấy điểm D sao cho BD = BH . Trên tia đối của CB lấy điểm E sao cho CE = CH . Gọi M và N lần lượt là trung điểm của CD VÀ BE . Hãy so sánh AB + AC với BC + MN
Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE
a) Chứng minh rằng HK song song
với DE
b) Tính HK, biết chu vi tam giác ABC bằng 10 cm
Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB...
Xem thêm
Cho tam giác ABC cân tại C nội tiếp đường trong (O). gọi M là 1 điểm thuộc cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MB .Tia CD cắt đường tròn tại N. chứng minh:
BD//MN
Cho đoạn AB cố định, điểm M di động trên đoạn AB. Kẻ tia Mx vuông góc với AB. Trên tia Mx, lấy 2 điểm C và D sao cho MC = MA, MD = MB. Gọi E, F lần lượt là trung điểm của AC và BD. Tìm vị trí của M sao cho diện tích tam giác MEF lớn nhất.
Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.
Cho đoạn thẳng AB cố định. M là điểm di động trên đoạn AB. Kẻ tia Mx vuông góc với AB tại M, trên tia MX lần lượt lấy các điểm C và D sao cho MC = MA, MD = MB. Gọi E, F lần lượt là trung điểm của AC và BD. Xác định vị trí điểm M để diện tích tam giác MEF lớn nhất
Cho \(\Delta ABC\) cân tại A, đường cao AH. Trên cạnh AB lấy điểm M, trên tia đối của tia AC lấy điểm N sao cho BM = CN, MN cắt BC tại D.
a, C/minh: D là trung điểm MN.
b, Đường trung trực của đoạn thẳng MN cắt AH tại E. Biết AB = 6cm, BE = 4,5cm. Tính diện tích của tam giác ABC.