cho tam giác ABC có AB = AC. M là trung điểm BC
a, CMR: tam giác AMB = tam giác ANC
b, Lấy D thuộc AB. Từ d kẻ vuông góc với AM tại K và kéo dài cắt AC tại E. CMR: AD = AE.
c, Trên tia đối của tia ED lấy F sao cho EF = MC. Gọi H là trung điểm EC
CMR: M,H,F thẳng hàng
tam giác ABC. AB = AC, B = C
Bài 4 (3,5 điểm) Cho tam giác ABC vuông tại A có AB = 5cm, AC = 12cm. Trên tia đối của tia AB lấy điểm D sao cho AB = AD
a. Chứng minh tam giác ADC = tam giác ABC
b. Tính độ dài cạnh DC
c. Từ A kẻ AK vuông góc với BC tại K, kẻ AH vuông góc với DC tại H. Chứng minh AK = AH
d. Kéo dài KA cắt tia CD tại M, kéo dài HA cắt tia CB tại N. Gọi I là trung điểm của MN. Chứng minh C, A, I thằng hàng.
Cho tam giác cân ABC, AB=AC, góc A<90 độ. Gọi E,F lần lượt là trung điểm của AB và AC. Trên nửa mặt phẳng bờ AC chứa tia AB vẽ tia Ax vuông góc với AC. Trên nửa mặt phẳng bờ AB chứa tia AC vẽ tia Ay vuông góc với AB. Ax và Ay lần lượt cắt đường thẳng BC tại P và Q. PE cắt AQ tại M, QF cắt AP tại N.
a)chứng minh BN=CM
b)chứng minh MN//EF
c)Gọi I là giao điểm của PM và QN, kéo dài AI cắt BC tại H. Chứng minh CP^2-CH^2=2.AH^2+HP^2
Cho tam giác ABC (AC > AB), kẻ đường trung trực của BC cắt AC tại D, cắt BC tại M.
a, CM: BD = DC
b, Kẻ AH vuông góc DM kéo dài (H thuộc DM). CM: goác CAH = góc DBC
c, Kéo dài BD và AH cắt nhau tại I. CMR: tam giác ABC = tam giác ICB
d, Cho AB và CI kéo dài cắt nhau ở N. CMR: N; H; M thẳng hàng
Cho tam giác ABC cân tại A. Gọi M là điểm bất kì thuộc cạnh BC (BM < 1⁄2BC). Trên tia đối
của tia CB lấy điểm N sao cho BM = CN. Qua M vẽ đường thẳng vuông góc BC và cắt AB tại E.
Qua N vẽ đường thẳng vuông góc BC và cắt phần kéo dài của AC tại F.
a) CMR: EM = FN.
b) Qua F kẻ FD // AB (D thuộc đường thẳng BC). CMR: MD = BN
c) EF cắt BC tại I. CMR: I là trung điểm DB.
d) Trên tia phân giác góc A lấy điểm K sao cho KB vuông góc với AB. CMR: KI vuông góc EF.
Cho tam giác ABC có AB > AC và góc A gấp đôi góc B. Trên cạnh AB lấy điểm M và trên tia đối của tia AC lấy điểm D sao cho:AM = AD. Nối DM kéo dài cắt BC tại N Chứng minh MN = BN
Cho tam giác ABC ; AC > AB .Trên AB lấy điểm D; trên AC lấy điểm E sao cho BD = CE. Gọi M là trung điểm của BC ; N là trung điểm của DE; I là trung điểm của DC.
a) C/m tam giác MIN cân
b) MN cắt AB kéo dài tại P và cắt AC tại Q. C/m tam giác APQ cân.
c) Kẻ đường phân giác trong AK của A, Kthuộc BC . C/m MN//AK
Cho tam giác ABC nhọn(AB<AC). Vẽ tia Ax phân giác góc BAC cắt cạnh BC tại D. Trên cạnh AC lấy điểm E sao cho AE=AB
a) CMR DB=DE
b) CMR: AD là đường trung trưc của cạnh BE
c) Trên tia AD kéo dài lấy điểm F sao cho AD=DF. KEr AH vuông góc BC và FK vuông góc BC. Chứng minh FH//AK
cho tam giác abc vuông tại a ab=5cm ac=12cm
a . bc=?
b . kéo dài ab lấy d , b là trung điểm của ad . nối cd qua b vẽ đường thẳng vuông góc ad cắt cd tại e
c . kẻ ak vuông góc bc tại k . qua p kẻ đương thăng vuông góc cd tai f . cm b là trung điểm kf
d . cm tam giác aec cân và suy ra e là trung điểm của dc