Cho tam giác ABC. Qua A vẽ đường thẳng xy song song BC. Trên cạnh BC lấy một điểm D. Vẽ DE song song AB, DF song song AC (E,F thuộc xy). Gọi M là giao điểm của AB và DF. Gọi N là giao điểm của AC và DE. Gọi O là giao điểm của AD và CF. Chứng minh rằng:
a) Ba điểm B,O,E thẳng hàng.
b) Ba điểm M,O,N thẳng hàng.
Cho hình bình hành ABCD. Điểm E thuộc tia đối của AB, điểm F thuộc tia đối của CD sao cho AE=CF. Gọi M là giao điểm của AD và CE; N là giao điểm của AF và BC. Gọi O là giao điểm của MN và AC. Chứng minh: a) B, O, D thẳng hàng b) E, O, F thẳng hàng
Cho hình bình hành ABCD. Điểm E thuộc tia đối của AB, điểm F thuộc tia đối của CD sao cho AE=CF. Gọi M là giao điểm của AD và CE; N là giao điểm của AF và BC. Gọi O là giao điểm của MN và AC. Chứng minh:
a) B, O, D thẳng hàng
b) E, O, F thẳng hàng
Cho hình bình hành ABCD. Điểm E thuộc tia đối của AB, điểm F thuộc tia đối
của CD sao cho AE=CF. Gọi M là giao điểm của AD và CE; N là giao điểm của AF và BC.
Gọi O là giao điểm của MN và AC. Chứng minh:
a) B, O, D thẳng hàng
b) E, O, F thẳng hàng
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
Cho tam giác ABC vuông tại A, AB = 6cm, AC = 10cm. Trên cạnh AB lấy điểm D sao cho BD = 2cm. Kẻ DE vuông góc AB ( E thuộc BC). Gọi F là hình chiếu của E trên AC.
1.Cm DF = AE
2. Trên tia FC lấy Q sao cho FQ = DE. Gọi Mlaf giao điểm của DQ và EF. Gọi O là giao điểm AE và DF . Cm OM // AC.
3. Vẽ G sao cho E và C đối xứng với nhau qua G . tính S tam giác OEG
Cho tam giác ABC vuông tại A ( AB < AC ). Gọi D, E, F lần lượt là trung điểm của BC, AB, AC
a) CM: AEDF là hình chữ nhật
b) Đường thẳng kẻ từ E và song song với BF cắt đường thẳng DF tại N. CM: ANCD là hình thoi
c) Gọi O là giao điểm của AD và EF. CM: B, O, M thẳng hàng
d) Trên tia DN lấy điểm M sao cho N là trung điểm của FM. Qua N kẻ đường thẳng vuông góc với AB cắt MC tại K. CM: B, F, K thẳng hàng
MỌI NGƯỜI GIÚP ĐỠ MÌNH NHÉ!
Cho tam giác ABC trên đường trung tuyến AM lấy các điểm D và E sao cho AD = DE = EM . Trên tia đối của CB lấy điểm F sao cho CF = CM . Gọi N là giao điểm của DF với AC . Chứng minh B, E, N thẳng hàng
Cho tam giác ABC cân tại A. Gọi D,E,H lần lượt là trung điểm của AB, AC, BC.
a) Tính độ dài đoạn thẳng DE khi BC=20cm.
b) Chứng minh: tứ giác DECH là hình bình hành.
c) Gọi F là điểm đối xứng của H qua E. Chứng minh: tứ giác AHCF là hình chữ nhật.
d) Gọi M là giao điểm của DF và AE; gọi N là giao điểm của DC và HE. Chứng minh NM vuông góc với DE.