Cho tam giác ABC vuông tại A (AB<AC). Trên tia đối của AB lấy D sao cho BD=AC. Trên tia đối của tia CA lấy E sao cho CE=AD. Tia DC cắt tia BE tại F. Tính góc CFB
Cho tam giác ABC có AB=4cm, AC=5cm, BC=6cm.Tia phân giác của góc B cắt AC tại D.
a) tính AD,DC.
b) kẻ AK//BC (K thuộc BC) tính AK.
c) trên tia đối của tia BC lấy điểm H sao cho BC=BH, vẽ BE vuông góc với BD (E thuộc AH). Tính tỉ số AE/EH
Giúp mình phần c với
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Cho tam giác abc vuông tại A có ab=3cm,bc=5cm.Tia phân giác của góc abc cắt ac tại d.a)tính ac,ad? b) vẽ tia Cx vuông góc với tia BD tại E và tia CE cắt AB tại F .CM: tam giác abd đồng dạng với tam giác ebc.c) tính tỉ số diện tích của tam giác abd và tam giác ebc
cho tam giác ABC vuông tại A , có AB=9cm;AC=12cm . Tia phân giác góc A cắt BC tại D , từ D kẻ DE vuông góc AC ( E thuộc AC)
a) Tính tỉ số \(\dfrac{BD}{DC}\), độ dài BD và CD
b) Chứng minh : tam giác ABC đồng dạng với tam giác EDC
c) Tính CD
d) Tính tỉ số \(\dfrac{^SABD}{^SADC}\)
Bài 3. Cho tam giác ABC, kẻ tia phân giác AD. Trên tia đối của tia BA, CA lần lượt lấy điểm E, F sao cho BE = BD, CF = CD. Chứng minh: a) BD CD BA CA . b) BE CF BA CA . c) EF BC / / . d) ED, FD lần lượt là phân giác góc BEF và CFE.
cho tam giác ABC
CMR :nếu 1 đường thẳng cắt cạnh AB ở D , Bc ở K và cắt tia đối tia CA ở E sao cho BD = CE thì tỉ số KE/KD không đổi
cho tam giác ABC có AB=4cm, BC = 6cm. Trên tia đối của tia AB lấy D sao cho AD=5 cm
a.Chứng minh tam giác ABC đồng dạng tam giác CBD
b. AC=7cm. Tính CD
c. Đường phân giác của góc ABC cắt CA, CD lần lượt tại E, F. Chứng minh CE.CF=EA.FD
Cho tam giác ABC(Â= 90° , AB<AC),AM là trung tuyến. Từ M kẻ MD vuông góc với AC. Trên tia đối của tia DM, lấy điểm E sao cho MD=ME
1,Chứng minh E đối xứng vs D qua A C
2, Tứ giác AECM là hình gì? Chứng minh
3, Kẻ MI vuông góc với AB,tia EA cắt tia MI tại F. Chứng minh F đối xứng vs E qua A
4, Tia BD cắt CE tại K. Tính tỉ số CK/CE
Bài 1
Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE
a) Chứng minh rằng HK song song
với DE
b) Tính HK, biết chu vi tam giác ABC bằng 10 cm
Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB
Bài 3 Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm của AH, E là giao điểm của BI và AC. Tính các độ dài AE và EC, biết AH = 12 cm, BC = 18 cm