Một số bài toán hay về tâm nội tiếp:
Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.
Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.
Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.
Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.
cho ABC nhọn có BC < AC<AB.đường tròn tâm O nội tiếp tam giác ABC.tiếp xúc AB tại D,tiếp xúc AC tại E ,tiếp xúc AC tại F.Lấy điểm M đối xứng với B qua F ,điểm N đối xứng với C qua E .BN,CM cắt EF ở K,H .Chứng minh tam giác DHK CÂN TẠI D
Cho tam giác ABC có(AB<AC) nội tiếp (O) có BC là đường kính, kẻ dây AD vuông góc BC tại I,tia DB cắt tia CA tại E qua E kẻ đường thẳng vuông góc BC tại H, cắt tia AB tại F. chứng minh
a) tam giác abd cân
b)H,E,A,B cùng thuộc một đường tròn
c)tam giác HAF cân
d) B cách đều 3 cạnh tam giác HAD
HELPPPPPPPPPPPP
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha
Cho tam giác ABC vuông tại A (AB<AC), đường cáo AH, nội tiếp đường tròn (O). M là điểm nằm chính giữa cung AC. Tia BM cắt AC tại E cắt tiếp tuyến tại C của (O) tại F. OM cát AC tại K
a) CM tứ giác AHOK nội tiếp
b) CM tam giác CEF cân
c) CM OM tiếp xúc vs đg tròn ngoại tiếp tam giác AOB
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Kẻ đường cao AH, đường kính AD.Kẻ HE vuông góc với AB tại E, HF vuông góc với AC tại F. Chứng minh AD vuông góc với EF
Cho tam giác ABC nội tiếp (O) đường kính BC, BC=10, AB=8
a) CMR: Tam giác ABC là tam giác vuông . Tính AC
b) Kẻ Dây AD vuông góc BC tại H. Tính AD
c) Tiếp tuyến tại A cắt 2 tiếp tuyến tại B và C của (O) tại E,F. CMR: EF=BE+CF , tính BE.CF
d) CMR: BC là tiếp tuyến cuả đường tròn ngoại tiếp tam giác EOF