a: Xét ΔPAC và ΔPBA có
\(\widehat{P}\) chung
\(\widehat{PAC}=\widehat{PBA}\)
Do đó:ΔPAC\(\sim\)ΔPBA
Suy ra: \(\dfrac{PA}{PB}=\dfrac{PC}{PA}\)
hay \(PA^2=PB\cdot PC\)
a: Xét ΔPAC và ΔPBA có
\(\widehat{P}\) chung
\(\widehat{PAC}=\widehat{PBA}\)
Do đó:ΔPAC\(\sim\)ΔPBA
Suy ra: \(\dfrac{PA}{PB}=\dfrac{PC}{PA}\)
hay \(PA^2=PB\cdot PC\)
Cho tam giác ABC nội tiếp (O). Tiếp tuyến tại A của (O) cắt BC tại P
a, Chứng minh các tam giác PAC và PBA đồng dạng
b, Chứng minh P A 2 = P B . P C
c, Tia phân giác trong của góc A cắt BC và (O) lần lượt tại D và M. Chứng minh M B 2 = M A . M D
Cho A nằm trên đường tròn (O) đường kính BC, phân giác của góc BAC cắt BC tại D và cắt đường tròn (O) tại M, AH là đường cao của tam giác ABC.
a) Cm OM vuông góc BC và MB2= MA.MD
b) Phân giác của góc ABC cắt AH tại E; cắt AM tại I; cắt AC tại F và cắt (O) tại N, cm MA = MB = MC.
c) cm EA.FA = EH.FC
d) Qua I kẻ IP vuông góc AB tại P, IP cắt BC tại K, chứng minh N, K, M thẳng hàng.
Cho tam giác ABC nhọn ( AB < AC ) nội tiếp ( O ). Tiếp tuyến tại A cắt BC tại S. I là trung điểm của BC. Tia OI cắt ( O ) tại D. AD cắt BC tại E. Vẽ đường kính DF của (O). SF cắt (O) tại M. CM : SE là tiếp tuyến của đường tròn ngoại tiếp tam giác MEF.
Cho tam giác ABC nội tiếp đường tròn (O), tia phân giác của góc A cắt (O) tại M, tiếp tuyến tại M của (O) cắt AB và AC tại D và E. Chứng minh:
a. BC//DE;
b. Tam giác AMC đồng dạng tam giác ADB;
c. AB.CE+CA.DB=2(MB)2.
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho tam giác ABC nội tiếp (O). Tia phân giác góc A cắt BC tại D, cắt đường tròn tại E. Tiếp tuyến của đường tròn tại C cắt AE tại M. Qua E vẽ đường thằng song song với BC cắt CM tại N. Chứng minh : 1/DC +1/MC = 1/NC .
Cho A nằm trên đường tròn (O) đường kính BC, phân giác của góc BAC cắt BC tại D và cắt đường tròn (O) tại M, AH là đường cao của tam giác ABC.
a) Chứng minh OM vuông góc BC và MB2= MA.MD
b) Phân giác của góc ABC cắt AH tại E; cắt AM tại I; cắt AC tại F và cắt (O) tại N, cm MA = MB = MC.
c) chứng minh EA.FA = EH.FC
d) Qua I kẻ IP vuông góc AB tại P, IP cắt BC tại K, chứng minh N, K, M thẳng hàng.
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng BC tại D. Vẽ OM vuông góc với BC tại M. a) Chứng minh tứ giác AOMD nội tiếp. b) Tia OM cắt đường tròn (O) tại điểm N, AN và BC cắt nhau tại I. Chứng minh AN là tia phân giác của góc BAC và AD=DI c) Tia phân giác của ABC cắt AN tại H. Giả sử dây AB cố định và điểm C di chuyển trên đường tròn (O) sao cho tam giác ABC nhọn (AB
1, Cho tam giác nhọn ABC co H là trực tâm, gọi M,N lần lượt là trung điểm của BC và AH. Đường phân giác trong góc A cắt MN tại K. CM AK vuông góc vs HK
2, Cho tam giác ABC nội tiếp đường tròn (O), Gọi AH, AD lần lượt là đường cao, đường phan giác trong của tam giác ABC (H,D thuộc BC). Tia AD cắt (O) tại E, tia EH cắt (O) tại F vaf tia FD cắt (O) tại K. CM AK là đường kính của (O)