a: Xét (O) có
ΔABC nội tiếp
BC là đường kính
DO đó: ΔABC vuông tại A
a: Xét (O) có
ΔABC nội tiếp
BC là đường kính
DO đó: ΔABC vuông tại A
Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)
Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình
Cho tam giác ABC vuông tại A. Gọi r và R lần lượt là bán kính đường tròn nội tiếp và ngoại tiếp tam giác ABC. Biết r =5 cm ; R = 37cm. Diện tích tam giác ABC là ... cm2.
Cho tam giác ABC vuông tại A . Gọi r và R lần lượt là bán kính đường tròn nội tiếp và ngoại tiếp và ngoại tiếp tam giác ABC . Biết r = 5cm , R = 37 cm . Diện tích tam giác ABC là ... cm2
Cho tam giác ABC cân nội tiếp đường tròn (O;R) có độ dài cạnh AB=AC=R ( BC khác đường kính)
a) Cm AO là tia phân giác của góc BAC
b) Cm BC > AB suy ra thứ tự khoảng cách từ tâm O đến các cạnh của tam giác ABC
c) Tính BC theo R chiều cao hạ từ A và diện tích tam giác ABC
giúp em với nha
cho tam giác ABC nội tiếp đường tròn (O) (AB<AC) . Phân giác trong của góc A cắt (O) ở M , phân giác ngoài của góc A cắt (O) tại N .
a . CM : MN vuông góc BC
b. gọi O1 , O2 lần lượt là tâm đường tròn ngoại tiếp tam giác ABD ; ACD . CM : MB là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD và B; O1 ; N thẳng hàng
c . chứng minh : tam giác AO1O2 đồng dạng ABC
d . CM : OO1 = OO2
Cho tam giác ABC nhọn có ba đường cao AD, BE, CF cắt nhau tại M. CM: a, Tứ giác BC EF và AE MF nội tiếp. b, EM. EB = EA . EC c, M là tâm đường tròn nội tiếp tam giác DEF d, AD = 5 cm, CD = 4 cm, BD = 3 cm .Tính diện tích tam giác BHC
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Trên cạnh BC lấy điểm D sao cho ^ABC = ^CAD. (K) là đường tròn nội tiếp tam giác ADC. E là chân đường phân giác xuất phát từ đỉnh B của tam giác ABC. Tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L. CM tâm đường tròn ngoại tiếp tam giác BLC nằm trên (O) ?
Cho tam giác ABC có AB=6cm; BC=8cm; AC=10 cm nội tiếp đường tròn (O;R). Diện tích hình tròn (O;R) là ... n (cm2)
1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất
2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.
a. tứ giác ACOD là hình j
b. tam giác BCD là tam giác j
c. tính chu vi và diện tích tam giác BCD
3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.
a. CM: tứ giác BHCD là hình bình hành
b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất
2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.
a. tứ giác ACOD là hình j
b. tam giác BCD là tam giác j
c. tính chu vi và diện tích tam giác BCD
3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.
a. CM: tứ giác BHCD là hình bình hành
b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với