Bài 4 : ( 3,5 điểm) Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O; R) (với AB < AC). BE và CF là 2 đường cao của tam giác cắt nhau tại H
a) Chứng minh tứ giác BEFC và AEHF là tứ giác nội tiếp
b) Đường thẳng EF cắt đường thẳng BC tại S và EF cắt đường tròn (O) tại M và N (M nằm giữa S và E). Chứng minh SM. SN = SE. SF
c) Tia CE cắt đường tròn (O) tại K, vẽ dây KI song song với EF.
Chứng minh H, K đối xứng nhau qua AB
d) Chứng minh 3 điểm H, F, I thẳng hàng.
Cho tam giác ABC có ba góc nhọn, AB < AC, nội tiếp đường tròn ( O, R). Vẽ đường kính AD của đường tròn ( O ), đường cao AH của tam giác ABC ( H thuộc BC ) và BE vuông góc với AD ( E thuộc AD ).
a) Chứng minh tứ giác AEHB nội tiếp
b) Chứng minh AH.DC = AC.BH
c) Gọi I là trung điểm của BC. Chứng minh rằng IH = IE
Cho tam giác ABC nhọn với AB<BC và D là điểm thuộc cạnh BC sao cho AD là phân giác của B A C ^ .
Đường thẳng qua C và song song với AD, cắt trung trực của AC tại E.
Đường thẳng qua B song song với AD, cắt trung trực của AB tại F.
1) Chứng minh rằng tam giác ABF đồng dạng với tam giác ACE.
2). Chứng minh rằng các đường thẳng B E ; C F ; A D đồng quy tại một điểm, gọi điểm đó là G.
3). Đường thẳng qua G song song với AE cắt đường thẳng BF tại Q. Đường thẳng QE, cắt đường tròn ngoại tiếp tam giác GEC tại P khác E. Chứng minh rằng các điểm A, P, G, Q, F cùng thuộc một đường tròn.
Bài 4 : ( 3,5 điểm)Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF, Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu góc BAC = 60o, AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của góc DFE
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại 1 điểm
Cho tam giác ABC nhọn nội tiếp đường tròn (O). H là trực tâm của tam giác ABC.
AD là đường kính của (O). E thuộc AC sao cho HE//BC.
1). Chứng minh rằng các đường thẳng BH và DE cắt nhau trên (O)
2). Gọi F là giao điểm của các đường thẳng EH và AB. Chứng minh rằng A là tâm đường tròn bàng tiếp ứng với đỉnh D của tam giác DEF
3). Gọi I là tâm đường tròn nội tiếp của tam giác DEF. Chứng minh rằng BE, CF và IH đồng quy.
Cho tam giác ABC nhọn(AB<AC) nội tiếp đường tròn nội tiếp đường tròn
tâm O
ĐỀ SỐ 2
Kẻ đường cao AH. Gọi M, N là hình chiếu vuông góc của H lên AB, AC. Kẻ NE
vuông góc với AH. Đường thẳng vuông góc với AC kẻ từ C cắt đường tròn tại I và
cắt tia AH tại D. Tia AH cắt đường tròn tại F
a) Chứng minh ABC+ACB=AIC và tứ giác DENC nội tiếp.
b) Chứng minh AM. AB = AN . AC.
c) Chứng minh tứ giác BFIC là hình thang cân.
d) Chứng minh tứ giác BMED nội tiếp .
cho tam giác ABC không là tam giác cân cân. Đường tròn (O) đi qua B, C lần lượt cắt các đoạn thẳng BA, CA tại E, F. Đường tròn ngoại tiếp tam giác ABE cắt đường thẳng CF tại M, N sao cho M nằm giữa C và F. Đường tròn ngoại tiếp tam giác ACF cắt đường thẳng BE tại P, Q sao cho P nằm giữa B và E.Đường thẳng qua N và vuông góc với AN cắt BE tại R. Đường thẳng qua Q và vuông góc với AQ cắt CF tại S. SP giao NR tại U. RM giao QS tại V. Chứng minh rằng NQ, UV, RS đồng quy
cho tam giác ABC có ba góc nhọn. Gọi BH, CK lần lượt là các đường cao kẻ từ B và C( H thuộc AC, K thuộc AB). Biết BH cắt CK tại M và AM cắt BC tại N. Chứng minh tứ giác HKBC nội tiếp đường tròn
Cho tam giác nhọn ABC nội tiếp đường tròn (O) với AB<AC .Đường phân giác của góc B A C ^ cắt (O) tại điểm D khác A
Gọi M là trung điểm của AD và E là điểm đối xứng với D qua tâm O.
Giả sử đường tròn ngoại tiếp tam giác ABM cắt đoạn thẳng AC tại điểm F khácA
2). Chứng minh rằng È vuông góc với AC
Cho tam giác nhọn ABC, đường cao AH, H thuộc BC. P thuộc AB sao cho CP là phân giác góc BCA.
Giao điểm của CB và AH là Q. Trung trực của PQ cắt AH và BC lần lượt tại E, F.
1). PE giao AC tại K. Chứng minh rằng PK vuông góc AC.