ΔABC cân tại A có AH là đường cao
nên AH là phân giác của góc BAC
Xét ΔABC có
AH, BK là phân giác
AH cắt BK tại O
=>O là tâm đường tròn nội tiếp
=>CO là phân giác của góc ACB
ΔABC cân tại A có AH là đường cao
nên AH là phân giác của góc BAC
Xét ΔABC có
AH, BK là phân giác
AH cắt BK tại O
=>O là tâm đường tròn nội tiếp
=>CO là phân giác của góc ACB
: Cho tam giác ABC nhọn và cân tại A, đường cao AH (H∈BC).
a/ Hai tam giác ABH và ACH có bằng nhau không? Vì sao?
b/ Tia AH có phải là tia phân giác của góc BAC không? Vì sao?
c/ Kẻ tia phân giác BK (K ∈ AC) của góc ABC. Gọi O là giao điểm của AH và BK. Chứng minh rằng CO là tia phân giác của góc ACB.
Bài 1: Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
a) Chứng minh rằng :HB=HC
b) Chứng minh rằng: AH là tia phân giác của góc A
Bài 2: Cho tam giác ABC cân tại A có góc A < 90 độ. Vẽ BM vuông góc với AC tại M, CN vuông góc với AB tại N
a) Chứng minh AM= AN
b) Gọi I là giao điểm của BM và CN. Chứng minh rằng AI là tia phân giác của góc A.
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB, BD và CE cắt nhau tại H. Chứng minh:
a, Tam giác ABD = tam giác ACE
b, Tam giác BHC cân
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK. So sánh góc ECB và góc DKC
1,cho tam giac nhon ABC kẻ AC vuông góc BC , kẻ BE vuông góc AC gọi H là giao điểm của AD và BE biết rằng AH=BC , tinh góc BAC
2, cho tam giác ABC vuông tại A kẻ AH vuông góc BC tia phân giác cua góc HAC cắt BC ở D . CMR tam giác ABC là tam giác cân
Bài 1: Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
a) Chứng minh rằng :HB=HC
b) Chứng minh rằng: AH là tia phân giác của góc A
Bài 2: Cho tam giác ABC cân tại A có góc A < 90 độ. Vẽ BM vuông góc với AC tại M, CN vuông góc với AB tại N
a) Chứng minh AM= AN
b) Gọi I là giao điểm của BM và CN. Chứng minh rằng AI là tia phân giác của góc A.
Cho tam giác ABC co góc B là góc tù. Kẻ AH vuông góc BC tại H. Trên tia AH lấy điểm Dsao cho HD = HA. Chứng minh:
a) CH là tia phân giác của góc ACD
b) CA = CD
tam giác ABC vuông tại A. kẻ AH vuông góc với BC tại H. trên tia đối của tia AH lấy điểm K sao cho AK=BC. trên tia đối của tia CA lấy điểm I sao co CI=AB.CM BK vuông góc với BI
Cho tam giác ABC vuông tại A, A C B ^ = 30 ° . Tia phân giác của góc ABC cắt cạnh AC tại M. Lấy điểm K trên cạnh BC sao cho BK = BA.
a) Chứng minh ∆ A B M = ∆ K B M
b) Gọi E là giao điểm của các đường thẳng AB và KM. Chứng minh tam giác MEC cân.
c) Chứng minh tam giác BEC đều.
d) Kẻ A H ⊥ E M . ( H ∈ E M ) . Các đường thẳng AH và EC cắt nhau tại N. Chứng minh K N ⊥ A C .
Cho tam giác ABC cân tại A (A là góc nhọn). Kẻ BD vuông AC ( D thuộc AC) , CE vuông AB ( E thuộc AB), BD và CE cắt nhau tại H
a) CHứng minh BD = CE
b) tam giác BHC cân
c) AH là đường trung trực của BC
d) trên tia BD lấy K sao cho D là trung điểm BK . So sánh góc ECB và góc DKC