1. Cho tam giác nhọn ABC ( AB≠AC) có các đường cao BD, CE cắt nhau tại H. Gọi O là giao điểm ba đường trung trực của tam giác ABC. M là trung điểm của BC. Gọi F là điểm đối xứng với A qua O.
a) Chứng minh: F đối xứng với H qua M.
b) HO cắt AM tại G. Chứng minh G là trọng tâm của tam giác ABC.
c) Giả sử AH=BC. Chứng minh HG đi qua trung điểm của đoạn thẳng DE.
2. Cho 2021 điểm phân biệt trong đó không có ba điểm nào thẳng hàng nằm trong hình chữ nhật (kể cả trên các cạnh) có kích thước 10\(\times\)101cm. Chứng minh rằng tồn tại một tam giác có 3 đỉnh lấy từ 2021 điểm đã cho có diện tích không vượt quá 1 cm2.
Cho tam giác nhọn abc. Đường cao bd và ce. Đường phân giác bm của tam giác abd và đường phân giác cn của tam giác ace. Ce giao bm tại h, cn giao bd tại k.
a) Chứng minh cn vuông góc với bm
b) chứng minh nmkh là hình thoi
Cho tam giác ABC nhọn(AB<AC), vẽ hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh: Tam giác ABD đồng dạng với tam giác ACE
b)Chứng minh: góc ADE=góc ABC
c) Gọi K là giao điểm của AH và BC. CHứng minh : BD là tia phân giác của góc EDK
d) Chứng minh: BH.BD vuông góc CH.CE=BC.BC
Cho tam giác ABC nhọn (AB < AC) có 3 đường cao AE, BD, CK cắt nhau tại H
a. Chứng minh tam giác HKB đồng dạng tam giác HDC và CE.CB = CD.CA
b. Gọi S là giao điểm của 2 đường thẳng DK và BC . Chứng minh góc SBK= góc SDC
c. Gọi O là giao điểm của BD và KE. Từ O kẻ đường thẳng // với đường thẳng KD, đường thẳng này cắt AC tại I. Gọi M là giao điểm của EI và KD. Chứng minh DK=DM
Giúp mình câu C với.
Cho tam giác ABC nhọn có BD và CE là 2 đường cao cắt nhau tại H (AB<AC) có ED cắt BC tại I. Chứng minh EC là phân giác của góc DEF( với F là giao điểm của AH và BC)
C1. Cho tam giác nhọn DEF. Đường cao EA và FB cắt nhau tại H.
a) Chứng minh rằng
b) Chứng minh rằng
C2. Cho tam giác nhọn ABC. Đường cao BD và CE cắt nhau tại H.
a) Chứng minh rằng
b) Chứng minh rằng
C3. Cho ABC vuông tại A, đư¬ờng cao AH cắt đ¬ường phân giác CD tại I.
a) Chứng minh rằng:
b) Chứng minh AC2 = CH.BC
C4. Cho hình bình hành ABCD, trên cạnh AB lấy một điểm M. Đường thẳng DM cắt cạnh CB kéo dài tại N.
a) Chứng minh : MAD MBN
b) Chứng minh : MA.MN = MD.MB
cho tam giác ABC có 3 góc nhọn, các đường cao BD và CE cắt nhau tại H a, CM tam giác ABD đồng dạng với tam giác ACE
b, chứng minh góc ADE = góc ABC
c, gọi K là giao điểm của AH và BC, F là giao điểm của DK và HC cm HE.CF=CE.HF
giúp phần c vs ạ
Bài 1: Cho hình thang ABCD (AB//CD) ,một đường thẳng song song với 2 đáy, cắt các cạnh AD,BC ở M và N sao cho MD = 2MA.
a.Tính tỉ số NB/NC
b.Cho AB = 8cm, CD = 17cm.Tính MN?
Bài 2: Cho hình thang ABCD(AB//CD).M là trung điểm của CD.Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC.
a.Chứng minh IK // AB
b.Đường thẳng IK cắt AD, BC theo thứ tự ở E và F.Chứng minh: EI = IK = KF.
Bài 3: Cho tam giác nhọn ABC và các đường cao BD, CE, AM cắt nhau tại H.
a,Chứng minh: ΔABD = ΔACE
b, Chứng minh: ΔAED ~ ΔACB và tính góc AED biết góc ACB = 48°
c, EH.EC=EA.EB
d, Chứng minh H là giao điểm ba đường phân giác của tam giác EDM
Bài 4: Cho tam giác ABC vuông ở A, đường cao AH, BC = 20cm, AH = 8cm. Gọi D là hình chiếu của H trên AC, E là hình chiếu của H trên AB.
a.) Chứng minh : AB2 = BH . BC
b) Chứng minh tam giác ADE đồng dạng với tam giác ABC.
c) Tính diện tích tam giác ADE
Bài 5: Cho tam giác ABC vuông ở A, AB = 15cm, AC = 20cm, đường phân giác BD; đường cao AH. Tính độ dài BC ; BH ; AH ; AD?