cho tam giác nhọn ABC có AB < AC . Gọi O là trung điểm của BC . Kẻ các đường cao BM và CN của tam giác ABC . Tia phân giác của góc BAC cắt tia phân giác của góc MON tại D . Gọi E là giao điểm của AD và BC . CMR tứ giác BNDE nội tiếp
Cho tam giác nhọn abc ab<ac. Gọi O là trung điểm của Bc, kẻ các đường cao Bm,Cn của tam giác abc. Tia phân giác của bac cắt tia phân giác của mon tại d. Gọi e là giao điểm của ad và bc, p là giao điểm của od và mn
A) CMR ad là phân giác của PAO
b) BNDE nội tiếp
1 .
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm I, đường kính AH cắt AB, AC lần lượt tại M và N, D là giao điểm của MN và OA
a) chứng minh AM.AB=AN.AC và tứ giác BMNC nội tiếp
b) cm tam giác ADI đồng dạng tam giác AHO
c) gọi E là giao điểm BC và NM, K là giao điểm AE và (I). cm góc BKC = 90°
2 .
Cho tam giác ABC nhọn, BC = AC, đường tròn tâm O đường kính BC cắt AB,AC tại E,F. BF cắt CE tại H, AH cắt BC tại D.
a) Chứng minh: AD vuông góc BC
b) Chứng minh: AD là đường phân giác của góc EDF
c) Đường tròn đường kính EC cắt AC tại M, BM cắt (O) tại K. Chứng minh: KC đi qua trung điểm của HF
1, Cho tam giác nhọn ABC co H là trực tâm, gọi M,N lần lượt là trung điểm của BC và AH. Đường phân giác trong góc A cắt MN tại K. CM AK vuông góc vs HK
2, Cho tam giác ABC nội tiếp đường tròn (O), Gọi AH, AD lần lượt là đường cao, đường phan giác trong của tam giác ABC (H,D thuộc BC). Tia AD cắt (O) tại E, tia EH cắt (O) tại F vaf tia FD cắt (O) tại K. CM AK là đường kính của (O)
Cho (O;R) và dây cung BC cố định (BC<2R).Điểm A di động trên đường tròn sao cho tam giác ABC nhọn,Gọi AD là đường cao của tam giác ABC và H là trực tâm tam giác ABC
a)Đường thẳng chứa tia phân giác góc ngoài góc BHC cắt AB,AC lần lượt tại M,N.Chưng minh tam giác AMN cân
b)Gọi E,F lần lượt là hình chiếu của D trên BH,CH.Chứng minh OA vuông goác với EF
c)Đường tròn ngoại tiếp tam giác AMN cắt đường phân giác góc trong của goác BAC tại K.Chứng minh rằng đường thẳng HK luôn đi qua 1 điểm cố định
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp (O;R).Dựng đường tròn (K)đường kính BC cắt AB,AC lần lượt tại F,E.Gọi H là giao của BEvới CF
1,CM: AF.AB=AE.AC và AH vuông góc với BC
2,CM: OA vuông góc với EF
3, Từ A dựng tiếp tuyến AM,AN tới (K) (M,N là tiếp điểm,N thuộc cung EC). CM: M;N;H thẳng hàng
4, Kẻ tia AD,phân giác góc BAC (D thuộc BC),AD kéo dài cắt (O) tại P.CM: OP giao CI tại J thuộc (ABC) với I là tâm (ACD)
Cho tam giác ABC nhọn nội tiếp (O).Kẻ đường cao AD của tam giác ABC, đường kính AK của đường tròn (O). Gọi E và F lần lượt là hình chiếu của B và C trên AK.Gọi M và N lần lượt là trung điểm của BC và AC. CM: M là tâm đường tròn ngoại tiếp tam giác DEF
Cho tam giác ABC nhọn nội tiếp (O).Kẻ đường cao AD của tam giác ABC, đường kính AK của đường tròn (O). Gọi E và F lần lượt là hình chiếu của B và C trên AK.Gọi M và N lần lượt là trung điểm của BC và AC. CM: M là tâm đường tròn ngoại tiếp tam giác DEF
Cho tam giác ABC nhọn nội tiếp (O).Kẻ đường cao AD của tam giác ABC, đường kính AK của đường tròn (O). Gọi E và F lần lượt là hình chiếu của B và C trên AK.Gọi M và N lần lượt là trung điểm của BC và AC. CM: M là tâm đường tròn ngoại tiếp tam giác DEF
Giúp đi những thần đồng chủ nhân tương lai của đất nước =((( *[bài tập tết em còn chục đề nx =((]
Cho tam giác ABC nhọn nội tiếp (O).Kẻ đường cao AD của tam giác ABC, đường kính AK của đường tròn (O). Gọi E và F lần lượt là hình chiếu của B và C trên AK.Gọi M và N lần lượt là trung điểm của BC và AC. CM: M là tâm đường tròn ngoại tiếp tam giác DEF