Bài 1: Cho tam giác ABC không cân, có ba góc nhọn, nội tiếp được đường tròn (O). các đường cao AH, BI, CK của tam giác ABC cắt nhau tại H. Các đường thẳng HK và AC cắt nhau tại điểm D. Gọi X là giao điểm thứ 2 của đường thẳng BD với đường tròn (O).
1. Chứng minh DX.DB =DN.DH
2. Gọi M là trung điểm cạnh AC. Chứng minh DH vuông góc vớiBM
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn(O). Hai đường cao AD và CE cắt nhau tại H. Tia BO cắt (O) tại M, gọi I là giao điểm của BM và DE, K là giao điểm của AC và HM
a) Chứng minh các tứ giác AEDC và CMID nội tiếp
b) Chứng minh OK vuông góc với AC
c) Cho góc AOK=60. Chứng minh tam giác HBO cân
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn(O). Hai đường cao AD và CE cắt nhau tại H. Tia BO cắt (O) tại M, gọi I là giao điểm của BM và DE, K là giao điểm của AC và HM a) Chứng minh các tứ giác AEDC và CMID nội tiếp b) Chứng minh OK vuông góc với AC c) Cho góc AOK=60. Chứng minh tam giác HBO cân
Tam giác ABC nội tiếp (O) . Các đường cao AA1 ; BB1 ; CC1 cắt nhau tại H . Đường thẳng AA1 cắt (O) ở K khác A
a, Cmr : A1 là trung điểm HK
b, tính HA/AA1 + HB/BB1 + HC/CC1
c, gọi M là hình chiếu của O trên BC . Đường thẳng BB1 cắt (O) tại E , kéo dài MB1 cắt AE tại N . CMR: AN/NE = (AB1/EB1)^2
Cho tam giác ABC nhọn nội tiếp đường tròn (O), đường cao AN, CK của tam giác ABC cắt nhau tại H
a, cm: tứ giác BKHM là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BKHM
b, cm: góc KBH= góc KCA
c, gọi E là trung điểm AC, cm: KE là tiếp tuyến của (I)
d, đường tròn (I) cắt (O) tại M. Chứng minh BM vuông góc ME
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
2)Cho tam giác ABC (AB<AC) nội tiếp đường tròn (O), đường trung tuyến AM. Lấy điểm D trên cung BC không chứa A sao cho góc BAD= góc CAM. Chứng minh góc ADB= góc CDM
3)Cho tam giác ABC nội tiếp đường tròn O tại D. Đường tròn (D;DB) cắt đường thẳng AB tại Q (khác B), cắt đuòng thẳng AC tại P (khác C). Chứng minh rằng AO vuông góc PQ
Các bạn giúp mình nhé để mình làm cho xong bài tập kẻo xuân này con không về
Bài 3. Cho tam giác ABC vuông ở A, với AC > AB. Trên AC lấy điểm M, vẽ đường tròn tâm O đường kính MC. Tia BM cắt đường tròn (O) tại D. Đường thẳng qua A và D cắt đường tròn (O) tại S. a) Chứng minh ABCD là tứ giác nội tiếp b) Chứng minh AC là tia phân giác của góc SCB c) Gọi E là giao điểm của BC với đường tròn (O). Chứng minh rằng các đường thẳng BA, EM, CD đồng quy. d) Chứng minh DM là tia phân giác của góc ADE e) Chứng minh M là tâm đường tròn nội tiếp tam giác ADE
cho tam giác ABC có ba góc nhọn nội tiếp đường tròn(o). hai đường cao CE và AD cắt nhau tại H. Tia BO cắt (o) tại M, gọi I là giao điểm của BM và DE, K là giao điểm của AC và HM. Chứng minh CMID nội tiếp đường tròn
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.