Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Captain America

Cho tam giác ABC nhọn, H,G,O lần lượt là trực tâm, trọng tâm và giao của 3 đường trung trực của tam giác ABC, M là trung điểm của BC.
a, Chứng minh rằng OM=1/2 AH 
b, E,F lần lượt là trung điểm của AG,HG
chứng minh: tam giác EFG = tam giác MOG 
c, Chứng minh: H,G,O thẳng hàng

 

o0o Dem_Ngay _Xa __Em o0...
8 tháng 6 2016 lúc 19:13

) Gọi M là trung điểm BC. Lấy điểm D sao cho O là trung điểm CD

Xét Δ BCD có M là trung điểm BC, O là trung điểm CD  OM là đường trung bình của Δ BCD

 OM=12DB và OM // DB 

mà OM⊥BC ( OM là đường trung trực của BC )  DB⊥BC

mà AH⊥BC( AH là đường cao của ΔABC )  AH // DB

Xét ΔABH và ΔBAD có

HABˆ=DBAˆ( 2 góc so le trong do AH // DB )

AB chung

ABHˆ=BADˆ( 2 góc so le trong do AH // DB )


ΔABH=ΔBAD( g-c-g )

 AH = BD mà OM=12DB  OM=12AH 

 AH = 2 OM ( đpcm )

b) Gọi G' là giao điển của AM và OH, P là trung điểm G'H, Q là trung điểm G'A

Xét Δ AG'H có P là trung điểm G'H, Q là trung điểm G'A  PQ là đường trung bình của \large\Delta AG'H 

PQ=12AH và PQ // AH

Do PQ=12AH mà OM=12AH PQ = OM

Do AH // OM ( cùng ⊥BC ) mà PQ // AH PQ // OM

Xét ΔPQG′ và ΔOMG′ có

PQG′ˆ=OMG′ˆ( 2 góc so le trong do PQ // OM)

PQ = OM (c/m trên )

QPG′ˆ=MOG′ˆ ( 2 góc so le trong do PQ //OM )


 ΔPQG′=ΔOMG′( g-c-g )

 G'Q = G'M và G'P = G'O

Ta có G'Q = G'M mà G′Q=12G′A( Q là trung điểm G'A )  G′M=12G′Amà G'M + G'A = AM 

 G′A=23AM mà AM là trung tuyến của ΔABC

 G' là trọng tâm của ΔABC ,mà G là trọng tâm của ΔABC G′≡ G

mà G′∈OH G∈OH  O, H, G thẳng hàng ( đpcm )

Hên xui nghe bạn ^ ^

Thắng Nguyễn
8 tháng 6 2016 lúc 19:30

Quyết Kiếm Sĩ:hên sui cái j copy trên mạng mà nổ wa :D

Lý Dịch Phong
27 tháng 2 2018 lúc 20:48

hình như Quyết kiếm sĩ sai rồi ấy 

dòng 9 ấy

Lý Dịch Phong
27 tháng 2 2018 lúc 20:50

bn copy ở đây à:https://diendan.hocmai.vn/threads/toan-hinh-cuc-kho-giup-minh-voi.241651/


Các câu hỏi tương tự
Nguyễn Thị Phương Anh
Xem chi tiết
Phương Linh
Xem chi tiết
Trịnh Thuý Hoài
Xem chi tiết
Le Thi Khanh Huyen
Xem chi tiết
Nguyễn Trương Thiên
Xem chi tiết
Hoàng Thu Hà
Xem chi tiết
Nguyễn Văn Bách
Xem chi tiết
Cố Tử Thần
Xem chi tiết
Luyen Hoang Khanh Linh
Xem chi tiết