Cho tam giác ABC có các góc đều nhọn. Các đường cao AD, BE, CF cắt nhau ở H. Chứng minh rằng:
a/ AE.AC = AF.AB
b/ △AFE∼△ACB
c/ △FHE∼△BHC
d/ BF.BA+CF.CA=BC2
cho tam giác ABC có 3 góc nhọn ( AB<AC ). Hai đường cao BE và CF cắt nhau tại H
a) chứng minh: HF.HC= HE.HB
b) chứng minh góc AFE và góc ACB
c) EF cắt BC tại K. Chứng minh KE.KF=KB.KC
d) Cho CF=4cm; AC=5cm; Bh=2cm. Tính BF?HF
cho tam giác ABC có 3 góc nhọn ( AB<AC ). Hai đường cao BE và CF cắt nhau tại H
a) chứng minh: HF.HC= HE.HB
b) chứng minh góc AFE và góc ACB
c) EF cắt BC tại K. Chứng minh KE.KF=KB.KC
d) Cho CF=4cm; AC=5cm; Bh=2cm. Tính BF?HF
Cho tam giác nhọn ABC, kẻ đường cao BE và CF cắt nhau tại H .
a/ Chứng minh:
b/ Chứng minh :AB.AF = AE . AC
c/ Chứng minh : AHBC.
d/ Chứng minh . BH.BE+CH.CF=BC2
cho tam giác ABC có 3 góc nhọn . Các đường vao AD,BE,CF cắt nhau tại H
1. Chứng minh rằng tam giác AEF đồng dạng với tam giác ABC
2. Chứng minh rằng :BH.BE+CH.CF=BC^2
3. Qua F kẻ đường thẳng vuông góc với FE cắt BE tại M . chứng minh FB.EC=FC.BM và EF.BC+BF.CE=BE.CF
4. Kẻ FI,EJ cùng vuông góc với BC (I,J thuộc BC). Các điểm K,L lần lượt thuộc AB,AC sao cho IK song song với AC,LJ song song với AB . Chứng minh 3 đường thẳng EI,FJ và KL đồng quy
Cho tam giác ABC nhọn. Kẻ các đường cao BE và CF cắt nhau tại H.
1) Chứng minh A E . A C = A F . A B v à Δ A E F ∽ Δ A B C .
2) Qua B kẻ đường thẳng song song với CF cắt tia AH tại M. AH cắt BC tại D. Chứng minh B D 2 = A D . D M .
3) Cho A C B ^ = 45 0 và kẻ AK vuông góc với EF tại K. Tính tỉ số S A F H S A K E .
4) Chứng minh: A B . A C = B E . C F + A E . AF
GIẢI GIÚP MIK VS Ạ
cho tam giác abc nhọn (ab<ac) vẽ đường cao be và cf cắt nhau tại h.
a chứng minh tam giác abe đồng dạng với tam giác acf
b chứng minh he.hb=hf.hc
c. ah cắt bc tại d . Chứng minh: BH.BE+CH.CF=BC2
Câu 2: Cho tam giác nhọn ABC, các đường cao AE, BF cắt nhau tại H. Gọi M là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HM, a cắt AB, AC lần lượt tại I và K. a, Chứng minh: tam giác ABC đồng dạng tam giác EFC b, Qua C kẻ đường thẳng b song song với IK cắt AH, AB lần lượt tại N và D. Chứng minh: CN=DN; IH=KH c, Gọi G là giao của CH và AB. Chứng minh: \(\frac{AH}{HE}+\frac{BH}{HF}+\frac{HC}{HG}>6\)
Cho tam giác ABC có ba góc nhọn, ba dường cao AD, BE và CF cắt nhau tại H. Từ A kẻ đường thẳng song song với BH cắt CH tại P và kẻ đường thẳng song song với CH cắt BH tại Q. Gọi M là trung điểm của BC. Chứng minh rằng: a) CA.AH=CB.AP. b) AM vuông góc PQ (Chủ yếu là chứng minh câu b)