Cho tam giác ABC nhọn, đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là giao điểm của BM và Cn. CM tiếp tuyến tại N đi qua trung điểm AH
cho tam giác abc nhọn,đường tròn đường kính bc cắt ab tại n và ac tại m. gọi h là giao điểm của bm và cn. chưng minh tiếp tuyến tại n đi qua trung điểm ah
Cho tam giác ABC nhọn, đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là giao
điểm của BM và CN.
1. Tính số đo các góc BMC và BNC.
2. Chứng minh AH vuông góc BC.
3. Chứng minh tiếp tuyến tại N đi qua trung điểm AH.
Cho tam giác ABC nhọn, đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là giao
điểm của BM và CN.
1. Tính số đo các góc BMC và BNC.
2. Chứng minh AH vuông góc BC.
3. Chứng minh tiếp tuyến tại N đi qua trung điểm AH.
Cho tam giác ABC nhọn. Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM, E là trung điểm AH.
a) Chứng minh H là trực tâm của tam giác ABC.
b) Chứng minh ME là tiếp tuyến của đường tròn (O).
c) Chứng minh MN. OE = 2ME. MO
Cho Tam giác ABC có ba góc nhọn ( AB<AC) . Vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại N, M. Gọi H là giao điểm của BM và CN, D là giao điểm của AH và BC. GỌi S là giao điểm của MN và BC. Qua S kẻ tiếp tuyến SK với (O).
Chứm minh ba điểmA,D,K thẳng hàng
Cho đường tròn (O) đường kính AB và dây AC không đi qua O (AC<AB).Gọi I là trung điểm AC.
a)Chứng minh OI//BC
b)Tiếp tuyến tại C của đường tròn (O) cắt tia OI ở M
CM: MA là tiếp tuyến
c)BM cắt đường cao CH của tam giác ABC tại K, và N là giao giao điểm tia BC và tia AM. CM:KC=KH
Cho tam giác ABC (AB nhỏ hơn AC) có 3 góc nhọn ,đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD, tia AH cắt cạnh BC tại F. Gọi I là trung điểm AH . Qua I kẻ đường thẳng vuông góc với AO cắt đường thẳng DE tại M. CM: AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE
Cho tam giác ABC nhọn. Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM, E là trung điểm AH.
a) Chứng minh H là trực tâm của tam giác ABC.
b) Chứng minh ME là tiếp tuyến của đường tròn (O).
c) Chứng minh MN. OE = 2ME. MO