Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Thị Trúc Linh

Cho tam giác ABC nhọn, đường cao AD và đường cao BE cắt nhau tại H. Gọi G, O lần lượt là trọng tâm và giao của các đường trung trực trong tam giác ABC. Gọi trung điểm của BC và AC lần lượt là M và N. Chứng minh: a) tam giác OMN đồng dạng với tam giác HAB. b) tam giác GOM đồng dạng với tam giác GHA. c) ba điểm H, G, O thẳng hàng và GH = 2OG

 

 

ミ★Zero ❄ ( Hoàng Nhật )
25 tháng 4 2021 lúc 15:24

a, 

Ta có ON // BH ( cùng vuông góc với AC )

OM // AH ( cùng vuông góc với BC )

MN // AB ( MN là đường trung bình của tam giác ABC )

Vậy tam giác OMN đồng dạng với tam giác HAB.

b,

Xét tam giác AHG và MOG có :

\(+,\widehat{HAG}=\widehat{OMG}\)( Do AH // OM )

\(+,\frac{OM}{AH}=\frac{MN}{AB}=\frac{1}{2}=\frac{GM}{GA}\)( DO 2 TAM GIÁC ĐỒNG DẠNG Ở CÂU a, )

Từ đó ta có tam giác AHG đồng dạng với tam giác MOG(c.g.c) nên \(\frac{OG}{HG}=\frac{MG}{MA}=\frac{1}{2}\)

Và \(\widehat{HGO}=\widehat{HGA}+\widehat{AGO}=\widehat{OGM}+\widehat{AGO}=\widehat{AGM}=180^0\)

\(\Rightarrow H,G,O\)thẳng hàng

Khách vãng lai đã xóa

Các câu hỏi tương tự
Phạm Thị Thùy Dương
Xem chi tiết
Khánh Anh
Xem chi tiết
nguyen phuong nhung
Xem chi tiết
Nguyễn Võ Thảo Vy
Xem chi tiết
phan gia huy
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
tfh
Xem chi tiết
nguyenthithu
Xem chi tiết
Nguyễn Ngọc Bảo Quang
Xem chi tiết