Cho tam giác ABC nhọn, đường cao AD và đường cao BE cắt nhau tại H. Gọi G, O lần lượt là trọng tâm và giao của các đường trung trực trong tam giác ABC. Gọi trung điểm của BC và AC lần lượt là M và N. Chứng minh: a) tam giác OMN đồng dạng với tam giác HAB. b) tam giác GOM đồng dạng với tam giác GHA. c) ba điểm H, G, O thẳng hàng và GH = 2OG
a,
Ta có ON // BH ( cùng vuông góc với AC )
OM // AH ( cùng vuông góc với BC )
MN // AB ( MN là đường trung bình của tam giác ABC )
Vậy tam giác OMN đồng dạng với tam giác HAB.
b,
Xét tam giác AHG và MOG có :
\(+,\widehat{HAG}=\widehat{OMG}\)( Do AH // OM )
\(+,\frac{OM}{AH}=\frac{MN}{AB}=\frac{1}{2}=\frac{GM}{GA}\)( DO 2 TAM GIÁC ĐỒNG DẠNG Ở CÂU a, )
Từ đó ta có tam giác AHG đồng dạng với tam giác MOG(c.g.c) nên \(\frac{OG}{HG}=\frac{MG}{MA}=\frac{1}{2}\)
Và \(\widehat{HGO}=\widehat{HGA}+\widehat{AGO}=\widehat{OGM}+\widehat{AGO}=\widehat{AGM}=180^0\)
\(\Rightarrow H,G,O\)thẳng hàng