cho tam giác ABC tia phan giac BD, CE , M là một điểm thuộc DE, kẻ MI vuông góc AB, MK vuông góc AC , MH vuông góc BC. chứng minh rằng MI + MK = MH
Cho tam giác abc nhọn, cắt đường cao bd và ce. Gọi m là trung điểm bc.Gọi I là trung điểm của de, chứng minh mi vuồng góc de. Vẽ bh và ck vuông góc de Chứng minh eh bằng dk
cho tam giác nhọn ABC, BD và CE là hai đường cao cắt nhau tại H. gọi M là trung điểm của cạnh BC, N là điểm trên tia đối của tia HA. đường thẳng qua N vuông góc với MH cắt AB,AC lần lượt tại I,K. chứng minh rằng N là trung điểm của IK
Bài 1: Cho tam giác ABC có 3 góc nhọn và AB < AC . Các đường cao BE , CF cắt nhau tại H . Gọi M là trung điểm của BC . Trên tia đối của tia MH lấy K sao cho HM = MK
a) Chứng minh : BHCK là hình bình hành
b) Chứng minh : BK vuông góc AB và CK vuông góc AC
c) Gọi I là điểm đối xứng với H qua BC . Chứng minh : BIKC là hình thang cân
d) BK cắt HI tại G , tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân
Mọi người giúp mình nhanh với , mình đang cần gấp
Mình cảm ơn mọi người trước nhé !
cho tam giác ABC cân tại A .Gọi M là trung điểm của bc .Kẻ đường cao BP .từ M ,kẻ các đường thẳng MK và MH lần lượt vuông góc với AC và AB tại K và H
a, chứng minh tam giác ABM = tam giác ACM
b, chứng minh BH =CK
cho tam giác nhọn abc. Các đường cao BD, CE cắt nhau tại H. Kẻ BI, CK cùng vuông góc với DE (I, K thuộc DE).
a) Chứng minh: AE.AB = AD. AC
b) Chứng minh tam giác ADE đồng dạng tam giác ABC
c)Gọi M là trung điểm BC. Kẻ MI vuông góc ED tại N. Chứng minh NI = NK và EI =DK
d) đường thẳng AD cắt BC tại F. Kẻ FP vuông góc ED tại P. CHứng minh PF là tia phân giác BPC
cho tam giác ABC cân tại A, các đường cao BD và CE. M,N lần lượt là trung điểm của BC, DE. MH vuông góc vói AB, MK vuông góc với AC. chứng minh HNKM là hình thoi
Cho tam giác nhọn ABC , BD và CE là hai đường cao cắt nhau tại H .
a, Chứng minh : Tam giác HED đồng dạng với tam giác HBC .
b, Gọi M là trung điểm của cạnh BC . Và P , Q lần lượt là hình chiếu của B , C trên đường thẳng ED .
Chứng minh : PE = QD .
c, Gọi N là điểm trên tia đối của tia HA . Đường thẳng qua N vuông góc với MH cắt AB , AC lần lượt tại I , K .
Chứng minh rằng : N là trung điểm của IK .
Cho tam giác nhọn ABC , BD và CE là hai đường cao cắt nhau tại H .
a, Chứng minh : Tam giác HED đồng dạng với tam giác HBC .
b, Gọi M là trung điểm của cạnh BC . Và P , Q lần lượt là hình chiếu của B , C trên đường thẳng ED .
Chứng minh : PE = QD .
c, Gọi N là điểm trên tia đối của tia HA . Đường thẳng qua N vuông góc với MH cắt AB , AC lần lượt tại I , K .
Chứng minh rằng : N là trung điểm của IK .