Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ninh Dương Lan Ngọc

Bài 1: Cho tam giác ABC có 3 góc nhọn và AB < AC . Các đường cao BE , CF cắt nhau tại H . Gọi M là trung điểm của BC . Trên tia đối của tia MH lấy K sao cho HM = MK 

a) Chứng minh : BHCK là hình bình hành 

b) Chứng minh : BK vuông góc AB và CK vuông góc AC 

c) Gọi I là điểm đối xứng với H qua BC . Chứng minh : BIKC là hình thang cân 

d) BK cắt HI tại G , tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân 

Mọi người giúp mình nhanh với , mình đang cần gấp  

Mình cảm ơn mọi người trước nhé !

Vi Hoàng Hải Đăng
18 tháng 10 2021 lúc 20:55

a) Tứ giác BHCKBHCK có 2 đường chéo HKHK và BCBC cắt nhau tại trung điểm MM của mỗi đường

Do đó tứ giác BHCKBHCK là hình bình hành

 

b) Tứ giác BHCKBHCK là hình bình hành

⇒BK∥CH⇒BK∥CH

Mà CH⊥ABCH⊥AB

⇒BK⊥AB⇒BK⊥AB (đpcm)

 

c) Gọi J=BC∩HIJ=BC∩HI

Xét ΔBHIΔBHI có BJBJ vừa là đường trung tuyến, vừa là đường cao nên ΔBHIΔBHI cân đỉnh B

⇒BJ⇒BJ là đường phân giác của ˆHBIHBI^

⇒ˆIBC=ˆHBC⇒IBC^=HBC^

mà ˆHBC=ˆKCBHBC^=KCB^ (hai góc ở vị trí so le trong do BH//CK)

Từ 2 điều trên ⇒ˆIBC=ˆKCB⇒IBC^=KCB^ (*)

ΔHIKΔHIK có JMJM là đường trung bình của tam giác, nên JM//IKJM//IK

Hay BC//IK⇒BIKCBC//IK⇒BIKC là hình thang (**)

Từ (*) và (**) suy ra BIKCBIKC là hình thang cân.

 

d) Tứ giác GHCKGHCK có GK∥HCGK∥HC

Do đó GHCKGHCK là hình thang

Để GHCKGHCK là hình thang cân thì ˆGHC=ˆKCHGHC^=KCH^

mà ˆKCH=ˆHBKKCH^=HBK^ (hai góc cùng bù ˆBHCBHC^ do BHCKBHCK là hình bình hành)

Từ hai điều trên ⇒ˆGHC=ˆHBK⇒GHC^=HBK^

ΔHJC:ˆHCJ=90o−ˆGHCΔHJC:HCJ^=90o−GHC^ (tổng ba góc trong tam giác bằng 180o180o)

ˆABH=ˆABK−ˆHBK=90o−ˆHBKABH^=ABK^−HBK^=90o−HBK^ (BK⊥ABBK⊥AB)

Từ 3 điều trên suy ra ˆHCJ=ˆABHHCJ^=ABH^

Mà ΔBCF:ˆFBC=90o−ˆHCJΔBCF:FBC^=90o−HCJ^

ΔABE:ˆEAB=90o−ˆABHΔABE:EAB^=90o−ABH^

Từ 3 điều trên ⇒ˆFBC=ˆEAB⇒FBC^=EAB^

hay ˆCBA=ˆCABCBA^=CAB^

⇒ΔABC⇒ΔABC cân đỉnh CC

ΔABCΔABC cân đỉnh CC thì GHCKGHCK là hình thang cân.

Nguyễn Lê Phước Thịnh
18 tháng 10 2021 lúc 21:05

a: Xét tứ giác BHCK có 

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành


Các câu hỏi tương tự
Nguyễn Phương Thảo Chi
Xem chi tiết
ngô đăng khôi
Xem chi tiết
Phan văn Hiếu
Xem chi tiết
YuKiMoMi Musik
Xem chi tiết
Bin ShinXiao
Xem chi tiết
Chi_chan
Xem chi tiết
Bin ShinXiao
Xem chi tiết
Bin ShinXiao
Xem chi tiết
Cao Thanh Nga
Xem chi tiết