cho tam giác ABC có các góc B và C đều nhọn các đường cao AD và BE cắt nhau tại H . GỌI G là trọng tâm của tam giác ABC
CMR :a, tanB.tanC = \(\frac{AD}{HD}\)
b, cho biets tanB.tanC = 3
cmr HG//BC
Cho tam giác ABC nhọn có góc BAC bằng 45 độ. Hai đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm của DE. Chứng minh rằng trọng tâm G của tam giác ABC nằm trên HI.
Bài 1. Cho tam giác ABC nhọn, các đường cao AD, BE cắt nhau tại H. Vẽ đường trung tuyến AM. Gọi G là trọng tâm của tam giác. Cho biết HG//BC. Chứng minh rằng tgB.tgC = 3.
Cho tam giác ABC nhọn các đường cao AD,BE cắt nhau tại H. Vẽ đường trung tuyến AM, gọi G là trọng tâm của tam giác ABC. Cho biết HG song song với BC. Chứng Minh: tanB.tanC=3
GIÚP MÌNH VỚI NHA CÁC Bạn!!!!
Cho tam giác ABC nhọn các đường cao AD,BE cắt nhau tại H. Vẽ đường trung tuyến AM, gọi G là trọng tâm của tam giác ABC. Cho biết HG song song với BC. Chứng Minh: tanB.tanC=3
GIÚP MÌNH VỚI NHA CÁC Bạn!!!!
Cho tam giác ABC nhọn các đường cao AD,BE cắt nhau tại H. Vẽ đường trung tuyến AM, gọi G là trọng tâm của tam giác ABC. Cho biết HG song song với BC. Chứng Minh: tanB.tanC=3
GIÚP MÌNH VỚI NHA CÁC BÁC!!!
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O; R). Các đường cao AD, BE, CF cắt nhau tại H. Kéo dài AO cắt đường tròn tại K. Gọi G là trọng tâm của tam giác ABC. Chứng minh SAHG=2.SAGO
Cho tam giác ABC là tam giác nhọn và nội tiếp đường tròn (O), AB bé hơn AC. Các đường cao BI, CK của tam giác ABC cắt nhau tại H. Kẻ đường kính AD của đường tròn (O).
a) Tứ giác BHCD là hình gì?
b) Các đoạn thẳng BC và HD cắt nhau tại M. Chứng minh AH = 2.OM.
c) Chứng minh tam giác AHD và tam giác ABC có cùng trọng tâm.
Cho tam giác ABC có 3 góc nhọn nội tiếp đường trong (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Kéo dài AO cắt đường tròn tại K. Gọi G là trọng tâm của tam giác ABC.
a. Chứng minh \(S_{AHG} = 2S_{AGO}\)
b. Chứng minh \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=1\)
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn O , hai đường cao BE,CF cắt nhau tại H . Tia AO cắt đường tròn O tại D
a, Cmr các điểm B,C,E,F thuộc 1 đường tròn
b, Cmr tứ giác BHCD là hình bình hành
c, Gọi M là trung điểm của tia BC, tia AM cắt HO tại G. Cmr G là trọng tâm tam giác ABC