Cho tam giác ABC nhọn (AB<AC), BC=2a và góc BAC =60 độ Vẽ đường tròn tâm O đường kính BC cắt AB, AC ở F và E.BE và CF cắt nhau tại H. gọi I là trung điểm của AH. tính bán kính đường tròn ngoại tiếp tứ giác EFOI
Cho tam giác ABC nhọn (AB < AC) vẽ đường tròn tâm O có đường kính BC cắt hai cạnh AB và AC theo thứ tự tại E và F ,gọi H là giao điểm của BE và CF, AH cắt BC tại D. Gọi I là trung điểm AH
a. Chứng minh tứ giác AEHF nội tiếp đường tròn tâm I và AD vuông góc BC
b. Chứng minh tứ giác OEIF nội tiếp và 5 điểm O, D, E, I, F cùng thuộc một đường tròn
C. cho biết BC = 6 cm và góc A = 60 độ Tính độ dài OI
Cho tam giac ABC (AB<AC) có ba góc nhọn. Vẽ đường tròn tâm (O) đường kính BC. Đường tròn này cắt AB tại E và cắt Ac ở D. BD cắt CE tại H.
a. Chứng minh tứ giác ADHE là tứ giác nội tiếp.
b. Chứng minh AD.AC= AE.AB
c. Chứng minh FH là tia phân giác của góc DFE, với F là giao điểm của AH và BC.
d. Cho BC=2a và góc BAC= 60 độ. Chứng minh tứ giác DEFO là tứ giác nội tiếp và tính chu vi của đường tròn ngoại tiếp tứ giác này theo a.
Cho tấm giác ABC có ba góc nhọn .Đường tròn tâm I đường kính BC cắt AB,AC thứ tự tại F,E.BE và CF cắt nhau tại H a.chứng mình H là trực tâm của tấm giác ABC b.Chứng mình tứ gác AEHF nội tiếp và xác định tâm của đường tròn ngoại tiếp AEHF c.chứng mình hai tam giác AEF và ABC đồng dạng suy ra AF.AB=AE.AC d.(O) là đường tròn ngoại tiếp tấm giác ABC và BC cố định và góc A=60°.Chứng mình 4 điểm B,H,O,C thuộc cùng một đương tròn
Cho tam giác ABC nhọn, Vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E, CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp đường tròn.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu góc BAC = 600, AH = 4cm.
c) Gọi AH cắt BC tại D. Chứng minh FH là tia phân giác của góc DFE
d) Chứng minh rằng hai tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Cho tam giác nhọn ABC với góc ABC=60,BC,=2a, AB<AC. gọi (O) là đường tròn đường kính BC. đường tròn (O) cắt cạnh AB, AC tại điểm thứ hai là D và E. Đoạn BE và CD cắtt nhau tại H
a) chứng minh tứ giác ADHE nội tiếp (I) . Xác định tâm I
b) Tiếp tuyến tại C của đường tròn (O) cắt DI tại M. tính OB/OM
c) Gọi F là giao. Điểm của AH và BC. Cho BF=3a/4.Tính bán kính của đường tròn nội tiếp tam giác DEF theo a
Cho tam giác ABC nhọn, Vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E, CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp đường tròn.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu góc BAC = 600, AH = 4cm.
c) Gọi AH cắt BC tại D. Chứng minh FH là tia phân giác của góc DFE
d) Chứng minh rằng hai tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Cho tam giác nhọn ABC , đường tròn tâm O đường kính BC cắt AC và AB lần lượt tại E và F,BE và CF cắt nhau tại H. a. C/m: góc BFC=90°;AH vuông góc với BC tại D và AFHE là tứ giác nội tiếp b. Gọi I,K lần lượt là trung điểm của BF và CE. C/m AH.AD=AF.AB và IDOK nội tiếp
Cho tam giác ABC (AB nhỏ hơn AC) có 3 góc nhọn ,đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD, tia AH cắt cạnh BC tại F. Gọi I là trung điểm AH . Qua I kẻ đường thẳng vuông góc với AO cắt đường thẳng DE tại M. CM: AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE