Cho tam giác nhọn ABC (AB<AC) có hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tại K. Chứng minh rằng:
a) AK⊥BC và BH.BD=BK.BC
b) \(\widehat{AED}\)=\(\widehat{ACB}\)
c) Gọi P là giao điểm của AK và DE, Q là giao điểm của DE và BC. Chứng minh KP là tia phân giác của \(\widehat{DKE}\), từ đó chứng minh PD.QE=PE.QD
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O (AB<AC)
Hai đường cao AD, CE cắt nhau tại H
a. Kẻ đường kính AK cắt CE tại M, CK cắt AD tại F, chứng minh tứ giác BEHD nội tiếp và AH. AF=AM.AK
b. Gọi I là trung điểm của BD, EI cắt AK tại N, Chứng minh tứ giác EDNC là hình thang cân
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O. 3 đường cao AK, BD, CE cắt nhau tại H. Gọi I,J lần lượt là trung điểm của DE và BC. Chứng minh rằng OA // JI
Cho tam giác ABC nhọn, các đường cao AK, BD, CE cắt nhau tại H.
1. Chứng minh: \(\dfrac{KC}{KB}=\dfrac{AC^2+CB^2-BA^2}{CB^2+BA^2-AC^2}\)
2.Giả sử: \(HK=\dfrac{1}{3}AK.\) Chứng minh rằng: tan B . tan C = 3
cho tam giác nhọn abc hai đường cao bd và ce cắt nhau tại h.
a) chứng minh a,d,e,h cùng thuộc 1 đường tròn
b) gọi F là giao điểm của ah và bc. chứng minh ch.ce=cf.cb
c)vẽ đường tròn (o;bc), và tiếp tuyến ak của o tại điểm k. chứng minh ah.af=ae.ab=ak^2
Mn giúp mình câu d vs ak!
Cho tam giác ABC có 3 góc nhọn, đường tròn tâm O có đường kính BC cắt AB, AC lần lượt tại E và D; BD và CE cắt nhau tại H
a/ Chứng minh: H là trực tâm của tam giác ABC.
b/ Gọi F là giao điểm của hai đường thẳng AH và BC. Chứng minh : AE . AB = AH. AF = AD. AC
c/ Gọi I là trung điểm của AH. Chứng tỏ có đường tròn tâm I đi qua 4 điểm A ,E, H, D.
d/ Chứng minh : góc EAH= góc EDH= góc ECB, suy ra IE, ID là tiếp tuyến của (O) và OD, OE là tiếp tuyến của (I).
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) Hai đường cao BD và CE cắt nhau tại H.Chứng minh rằng:
a.Tứ giác BEDC,AEHD là tứ giác nội tiếp;
b.DEC=DBC
c.Qua A vẽ tiếp tuyến xy của (O) chứng minh OA vuông góc với DE
Cho tam giác ABC nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác cắt nhau tại H. Chứng minh rằng rằng:
A) Tứ giác BCDE nội tiếp đường tròn, từ đó suy ra góc BCD = góc AED
B) Kẻ đường kính AK, chứng minh AB.BC = AK.BD
C) Từ điểm O kẻ OM vuông góc với BC Chứng minh H, K, M thẳng hàng
Cho tam giác ABC nhọn. Các đường cao AK,BD,CE cắt nhau tại H.
1.Chứng minh: \(\dfrac{KC}{KB}=\dfrac{AC^2+CB^2-BA^2}{CB^2+BA^2-AC^2}\)
2. Giả sử: \(HK=\dfrac{1}{3}AK\) . Chứng minh rằng: tanB . tan C =3
3.Giả sử \(S_{ABC}=120cm^2\) và BAC = \(60^o\) . Hãy tính diện tích tam giác ADE?