Cho tam giác ABC. M là trung điểm AC.Trên tia đối của tia MB lấy điểm D sao cho BM=MD.
al Chứng minh : tam giác ABM = tam giác CDM
b/ Chứng minh : AB = CD
b/ Chứng minh : AB // CD
d/ Chứng minh : tam giác AMD =tam giác ACMB
el Chứng minh AD=BC
f/ Chứng minh AD // BC
g/ Trên DC kéo dài lấy điểm N sao cho CD =CN (C ko bằng N) chứng minh : BN // AC.
a.Xét tam giác ABM và tam giác CDM có :
AB=CD (gt)
BM=MD(cmt)
BD cạnh chung
=> \(\Delta ABM=\Delta CDM\)
b.*AB//CD
Vì \(\Delta ABM=\Delta CDM\) (cmt )
BAM=MCD( 2 góc tương ứng )
=>AB//CD
*AB=CD
Vì \(\Delta ABM=\Delta CDM\left(cmt\right)\)
=>AB=CD ( 2 cạnh tương ứng )
.Câu d.e.f áp dụng lại như vạy , câu g thì mình lười suy nghĩ ^^